题目内容
5.在△ABC中,内角A,B,C对边分别为a,b,c,且c<a,已知$\overrightarrow{CB}$•$\overrightarrow{BA}$=-2,tanB=2$\sqrt{2}$,b=3.(1)求a和c的值;
(2)求sin(B-C)的值.
分析 (1)由tanB=2$\sqrt{2}$得cosB,由知$\overrightarrow{CB}$•$\overrightarrow{BA}$=-2得accosB=2,解得ac,由余弦定理及a>c,即可解得a,c的值.
(2)由(Ⅰ)可求sinB,由正弦定理可求sinC,cosC,利用两角差的正弦函数公式即可得解.
解答 解:(Ⅰ)∵$\overrightarrow{CB}$•$\overrightarrow{BA}$=-2,
∴$\overrightarrow{BA}•\overrightarrow{BC}$=2,
∴cacosB=2,
∵tanB=2$\sqrt{2}$,
∴cosB=$\frac{1}{\sqrt{1+tanB}}$=$\frac{1}{3}$,
∴ac=2
在△ABC中,由余弦定理得:b2=a2+c2-2accosB,
即a2+c2=13,
∴a=2,c=3,或a=3,c=2,
∵a>c,
∴a=3,c=2.
(2)在△ABC中,sinB=cosB•tanB=$\frac{2\sqrt{2}}{3}$,
由正弦定理得sinC=$\frac{csinB}{b}$=$\frac{2}{3}$•$\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
∵a=b>c,
∴C为锐角,
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{7}{9}$,
∴sin(B-C)=sinBcosC-cosBsinC=$\frac{2\sqrt{2}}{3}$×$\frac{7}{9}$+$\frac{1}{3}$×$\frac{4\sqrt{2}}{9}$=$\frac{10\sqrt{2}}{27}$
点评 本题主要考查了余弦定理,正弦定理,两角差的正弦函数公式,平面向量数量积的运算,属于中档题.
| 甲校 | 乙校 | 丙校 | |
| 男生 | 97 | 90 | x |
| 女生 | 153 | y | z |
(1)求表中x+z的值;
(2)某市四月份模考后,市教研室准备从这三所学校的所有高三文科学生中利用随机数表法抽取100人进行成绩统计分析.先将800人按001,002,…,800进行编号.如果从第8行第7列的数开始向右读,请你依次写出最先检测的4个人的编号:(下面摘取了随机数表中第7行至第9行)
| 8442 | 1753 | 3157 | 2455 | 0688 | 7704 | 7447 | 6721 | 7633 | 5026 | 8392 |
| 6301 | 5316 | 5916 | 9275 | 3862 | 9821 | 5071 | 7512 | 8673 | 5807 | 4439 |
| 1326 | 3321 | 1342 | 7864 | 1607 | 8252 | 0744 | 3815 | 0324 | 4299 | 7931 |
| A. | -$\frac{1}{2}$-n | B. | $\frac{1}{2}$-n | C. | $\frac{1}{2}$+n | D. | -$\frac{1}{2}$+n |
| A. | 在平面α内没有直线与直线a垂直 | |
| B. | 在平面α内有且只有一条直线与直线a垂直 | |
| C. | 在平面α内有无数条直线与直线a垂直 | |
| D. | 在平面α内存在两条相交直线与直线a垂直 |
| A. | a>1 | B. | a<1 | C. | a≥1 | D. | a≤1 |