题目内容
16.如果实数x,y满足:$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\\{\;}\end{array}\right.$,则$\frac{x+y}{x}$的最大值为( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据已知的约束条,画出满足约束条件的可行域,将式子进行变形,再分析目标函数的几何意义,结合图象即可给出目标函数的取值范围.
解答 解:约束条件对应的平面区域如下图示:
设k=$\frac{y}{x}$,表示可行域内的点(x,y)与点(0,0)连线的斜率
由图可知k的最大值为直线2x-y=0的斜率2,
故$\frac{x+y}{x}$=1+k的最大值是3,
故选:C.![]()
点评 本题主要考查线性规划的应用,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
练习册系列答案
相关题目
7.若函数f(x)=sin(ωx+$\frac{π}{6}$)-cosωx的图象相邻两个对称中心之间的距离为$\frac{π}{2}$,则f(x)的一个单调增区间为( )
| A. | (-$\frac{π}{6}$,$\frac{π}{3}$) | B. | (-$\frac{π}{3}$,$\frac{π}{6}$) | C. | ($\frac{π}{6}$,$\frac{2π}{3}$) | D. | ($\frac{π}{3}$,$\frac{5π}{6}$) |
4.已知函数$f(x)=\left\{\begin{array}{l}2{(x+1)^2},\;a≤x<k\\{log_2}(x+1)+1,\;\;k≤x≤1.\end{array}\right.$若存在实数k使得该函数值域为[0,2],则实数a的取值范围是( )
| A. | (-∞,-2] | B. | [-2,-1] | C. | [-2,-$\frac{1}{2}$) | D. | [-2,0] |
11.过点A(3,1)的直线l与圆C:x2+y2-4y-1=0相切于点B,则$\overrightarrow{CA}•\overrightarrow{CB}$=( )
| A. | 0 | B. | $\sqrt{5}$ | C. | 5 | D. | $\frac{{\sqrt{50}}}{3}$ |
1.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=( )
| A. | (-2,+∞) | B. | [-1,1] | C. | [-1,1]∪[2,+∞) | D. | (-2,1] |
8.复数Z=$\frac{2+ai}{1+i}$(a∈R)在复平面内对应的点在虚轴上,则a=( )
| A. | 2 | B. | -2 | C. | 1 | D. | -1 |