题目内容
13.若数列{an}与{bn}满足bn+1an+bnan+1=(-1)n+1,bn=$\frac{3+(-1)^{n-1}}{2}$,n∈N*,且a1=2,设数列{an}的前n项和为Sn,则S61=527.分析 bn+1an+bnan+1=(-1)n+1,bn=$\frac{3+(-1)^{n-1}}{2}$,n∈N*,a1=2,可得:a2=-1.n=2k-1(k∈N*)时,2a2k+a2k-1=0.n=2k(k∈N*)时,2a2k+a2k+1=2.
可得a2k+1-a2k=2,a2k+2-a2k=-1,因此数列{an}的奇数项与偶数项分别成等差数列,公差分别为2,-1.即可得出.
解答 解:∵bn+1an+bnan+1=(-1)n+1,bn=$\frac{3+(-1)^{n-1}}{2}$,n∈N*,a1=2,
∴b1=2,b2=1,b2a1+b1a2=0,a2=-1.
n=2k-1(k∈N*)时,2a2k+a2k-1=0.
n=2k(k∈N*)时,2a2k+a2k+1=2.
∴a2k+1-a2k=2,a2k+2-a2k=-1,
∴数列{an}的奇数项与偶数项分别成等差数列,公差分别为2,-1.
∴S61=(a1+a3+…+a61)+(a2+a4+…+a60)
=$31×2+\frac{31×30}{2}×2$+(-1)×30+$\frac{30×29}{2}×$(-1)
=527.
故答案为:527.
点评 本题考查了等差数列的通项公式及其前n项和公式、分类讨论方法、分组求和方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
3.有一个容量为60的样本,数据的分组及各组的频数如下:
[11.5,15.5)2;
[15.5,19.5)4;
[19.5,23.5)5;
[23.5,27.5)16;
[27.5,31.5)1l;
[31.5,35.5)12;
[35.5.39.5)7;
[39.5,43.5)3;
根据样本的频率分布估计,数据落在[27.5,39.5)的概率约是( )
[11.5,15.5)2;
[15.5,19.5)4;
[19.5,23.5)5;
[23.5,27.5)16;
[27.5,31.5)1l;
[31.5,35.5)12;
[35.5.39.5)7;
[39.5,43.5)3;
根据样本的频率分布估计,数据落在[27.5,39.5)的概率约是( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
4.已知函数$f(x)=\left\{\begin{array}{l}2{(x+1)^2},\;a≤x<k\\{log_2}(x+1)+1,\;\;k≤x≤1.\end{array}\right.$若存在实数k使得该函数值域为[0,2],则实数a的取值范围是( )
| A. | (-∞,-2] | B. | [-2,-1] | C. | [-2,-$\frac{1}{2}$) | D. | [-2,0] |
1.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=( )
| A. | (-2,+∞) | B. | [-1,1] | C. | [-1,1]∪[2,+∞) | D. | (-2,1] |
8.复数Z=$\frac{2+ai}{1+i}$(a∈R)在复平面内对应的点在虚轴上,则a=( )
| A. | 2 | B. | -2 | C. | 1 | D. | -1 |
2.(x+2y)7展开式中系数最大的项是( )
| A. | 68y7 | B. | 112x3y4 | C. | 672x2y5 | D. | 1344x2y5 |