题目内容

5.数列{an}满足a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),则$\sum_{i=1}^{100}$ai=1.

分析 利用a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),可得an+3=an.即可得出.

解答 解:∵a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),
∴a3=$\frac{{2}^{2}-7}{1}$=-3,a4=$\frac{(-3)^{2}-7}{2}$=1,a5=$\frac{{1}^{2}-7}{-3}$=2,…,
∴an+3=an
则$\sum_{i=1}^{100}$ai=33(a1+a2+a3)+a1=0+1=1.
故答案为:1.

点评 本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网