题目内容

9.已知某厂生产的电子产品的使用寿命X(单位:小时)服从正态分布N(1000,σ2),且P(X<800)=0.1,P(X≥1300)=0.02.
(1)现从该厂随机抽取一件产品,求其使用寿命在[1200,1300)的概率;
(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在[800,1200)的件数为Y,求Y的分布列和数学期望E(Y).

分析 (1)X~正态分布N(1000,σ2),且P(X<800)=0.1,P(X≥1300)=0.02.可得P(1200≤X<1300)+P(X≥1300)=P(X≥1200)=P(X<800).即可得出P(1200≤X<1300).
(2)P(800≤X<1200)=1-2P(X<800)=$\frac{4}{5}$.可得Y~B$(3,\frac{4}{5})$.P(Y=k)=${∁}_{3}^{k}(\frac{4}{5})^{k}•(\frac{1}{5})^{3-k}$,(k=0,1,2,3).即可得出.

解答 解:(1)∵X~正态分布N(1000,σ2),且P(X<800)=0.1,P(X≥1300)=0.02.
∴P(1200≤X<1300)+P(X≥1300)=P(X≥1200)=P(X<800)=0.1.
∴P(1200≤X<1300)=0.1-0.02=0.08.
即使用寿命在[1200,1300)的概率为0.08.
(2)∵P(800≤X<1200)=1-2P(X<800)=1-2×0.1=0.8=$\frac{4}{5}$.
∴Y~B$(3,\frac{4}{5})$.∴P(Y=k)=${∁}_{3}^{k}(\frac{4}{5})^{k}•(\frac{1}{5})^{3-k}$,(k=0,1,2,3).
P(Y=0)=$(\frac{1}{5})^{3}$=$\frac{1}{125}$,P(Y=1)=${∁}_{3}^{1}×\frac{4}{5}×(\frac{1}{5})^{2}$=$\frac{12}{125}$,同理可得:P(Y=2)=$\frac{48}{125}$,P(Y=3)=$\frac{64}{125}$.
所以Y分布列:

 Y 0 1 2 3
 P(Y) $\frac{1}{125}$ $\frac{12}{125}$ $\frac{48}{125}$ $\frac{64}{125}$
EY=$3×\frac{4}{5}$=$\frac{12}{5}$.

点评 本题考查了正态分布的性质及其应用、二项分布列及其数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网