题目内容
20.| A. | 12 | B. | 9 | C. | 6 | D. | 36 |
分析 画出几何体的直观图,然后利用三视图的数据求解几何体的体积即可.
解答
解:由三视图可知几何体的直观图如图:
几何体的体积为:$\frac{1}{3}×2×3\sqrt{2}×\frac{3\sqrt{2}}{2}$=6.
故选:C.
点评 本题考查三视图求解集合体的体积,判断集合体的形状是解题的关键.
练习册系列答案
相关题目
4.两灯塔A,B与海洋观察站C的距离都为a,灯塔A在C的北偏东30°,B在C的南偏东60°,则A,B两灯塔之间距离为( )
| A. | 2a | B. | $\sqrt{3}$a | C. | $\sqrt{2}$a | D. | a |
15.某公司对新研发的一种产品进行试销,得到如下数据及散点图:

其中z=2lny,$\overline{x}$=35,$\overline{y}$=455,$\overline{z}$=11.55,$\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$=1750,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})$=-34580,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({z}_{i}-\overline{z})$=-175.5,$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$=776840,$\sum_{i=1}^{6}({y}_{i}-\overline{y})•({z}_{i}-\overline{z})$=3465.2
(1)根据散点图判断y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)
(2)根据Ⅰ的判断结果及数据,建立y关于x的回归方程(运算过程及回归方程中的系数均保留两位有效数字)
(3)定价为150元/kg时,天销售额的预报值为多少元?
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线$\widehat{y}$=$\widehat{b}$•x$+\widehat{a}$的斜率和截距的最小二乘法估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$•\overline{x}$.
| 定价x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
| 天销售量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
| z=2lny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
其中z=2lny,$\overline{x}$=35,$\overline{y}$=455,$\overline{z}$=11.55,$\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$=1750,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})$=-34580,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({z}_{i}-\overline{z})$=-175.5,$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$=776840,$\sum_{i=1}^{6}({y}_{i}-\overline{y})•({z}_{i}-\overline{z})$=3465.2
(1)根据散点图判断y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)
(2)根据Ⅰ的判断结果及数据,建立y关于x的回归方程(运算过程及回归方程中的系数均保留两位有效数字)
(3)定价为150元/kg时,天销售额的预报值为多少元?
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线$\widehat{y}$=$\widehat{b}$•x$+\widehat{a}$的斜率和截距的最小二乘法估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$•\overline{x}$.
10.
某高中学校为了解中学生的身高情况,从该校同年龄段的所有学生中随机抽取50名学生测量身高,由测量得到频率分布表和频率分布直方图(部分)如下:
(1)求m,n并在该题答题纸区域内补全频率分布直方图;
(2)请用这50名学生的身高数据来估计该校这个年龄段的学生身高平均数是多少?(同一组中的数据用该组的中点值作代表);
(3)从[145,155)和[185,195]这两组中任意取出两名学生,求这两名学生身高差距超过10cm的概率.
| 身高 | [145,155) | [155,165) | [165,175) | [175,185) | [185,195] |
| 频数 | 3 | m | 19 | n | 4 |
(2)请用这50名学生的身高数据来估计该校这个年龄段的学生身高平均数是多少?(同一组中的数据用该组的中点值作代表);
(3)从[145,155)和[185,195]这两组中任意取出两名学生,求这两名学生身高差距超过10cm的概率.