题目内容
19.为了得到函数y=sin(2x-$\frac{π}{3}$)的图象,只需把函数y=sin2x的图象( )| A. | 向左平移$\frac{π}{3}$个单位长度 | B. | 向右平移$\frac{π}{3}$个单位长度 | ||
| C. | 向左平移$\frac{π}{6}$个单位长度 | D. | 向右平移$\frac{π}{6}$个单位长度 |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:把函数y=sin2x的图象向右平移$\frac{π}{6}$个单位长度,可得到函数y=sin(2x-$\frac{π}{3}$)的图象,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
10.
某高中学校为了解中学生的身高情况,从该校同年龄段的所有学生中随机抽取50名学生测量身高,由测量得到频率分布表和频率分布直方图(部分)如下:
(1)求m,n并在该题答题纸区域内补全频率分布直方图;
(2)请用这50名学生的身高数据来估计该校这个年龄段的学生身高平均数是多少?(同一组中的数据用该组的中点值作代表);
(3)从[145,155)和[185,195]这两组中任意取出两名学生,求这两名学生身高差距超过10cm的概率.
| 身高 | [145,155) | [155,165) | [165,175) | [175,185) | [185,195] |
| 频数 | 3 | m | 19 | n | 4 |
(2)请用这50名学生的身高数据来估计该校这个年龄段的学生身高平均数是多少?(同一组中的数据用该组的中点值作代表);
(3)从[145,155)和[185,195]这两组中任意取出两名学生,求这两名学生身高差距超过10cm的概率.
7.三个女生和五个男生排成一排.
(1)如果女生必须全排在一起,可有多少种不同的排法?
(2)如果女生必须全分开,可有多少种不同的排法?
(3)如果两端都不能排女生,可有多少种不同的排法?(结果用数字表示)
(1)如果女生必须全排在一起,可有多少种不同的排法?
(2)如果女生必须全分开,可有多少种不同的排法?
(3)如果两端都不能排女生,可有多少种不同的排法?(结果用数字表示)
4.5张卡片上分别标有号码1,2,3,4,5,现从中任取3张,则3张卡片中最大号码为4的概率是( )
| A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{10}$ |