题目内容

用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数a,b,c中恰有一个偶数”时正确的反设为(  )
A、自然数a,b,c都是奇数
B、自然数a,b,c都是偶数
C、自然数a,b,c中至少有两个偶数
D、自然数 a,b,c中至少有两个偶数或都是奇数
考点:反证法与放缩法
专题:证明题,反证法
分析:由于命题“自然数a、b、c中恰有一个偶数”的否定是“自然数a、b、c中都是奇数或至少有两个偶数”,从而得出结论.
解答: 解:用反证法法证明数学命题时,应先假设要证的命题的反面成立,即要证的命题的否定成立,
而命题:“自然数a,b,c中恰有一个偶数”的否定为:“自然数 a,b,c中至少有两个偶数或都是奇数”,
故选:D.
点评:本题考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网