题目内容
15.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①cos211°+sin241°-cos11°sin41°;
②cos222°+sin252°-cos22°sin52°;
③cos230°+sin260°-cos30°sin60°;
④cos244°+sin244°-cos44°sin74°;
⑤cos255°+sin285°-cos55°sin85°.
将该同学的发现推广三角恒等式为cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$.
分析 依据式子的结构特点、角之间的关系,可以得到形如“cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$”的规律.然后利用三角函数的化简即可得到答案
解答 解:根据式子特点猜想:cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$
cos2α+sin2(α+30°)-cosαsin(α+30°)
=cos2α+(sin30°cosα+cos30°sinα)2-cosα(sin30°cosα+cos30°sinα)
=cos2α+($\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)2-cosα($\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)
=cos2α+($\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)(-$\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)
=cos2α-$\frac{1}{4}$cos2α+$\frac{3}{4}$sin2α=$\frac{3}{4}$,
故答案为:cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$
点评 归纳推理一般是先根据个别情况所体现出来的某些相同的规律,然后从这些已知的相同性质规律推出一个明确的一般性规律或性质.此题是一个三角函数式,所以重点抓住角之间的关系,式子的结构特点进行归纳,得出一般性结论.
练习册系列答案
相关题目
19.定义在R上的可导函数f(x)满足f(x)-f(-x)=2x3,当x∈(-∞,0]时f'(x)<3x2,实数a满足f(1-a)-f(a)≥-2a3+3a2-3a+1,则a的取值范围是( )
| A. | $[{\frac{3}{2},+∞})$ | B. | $({-∞,\frac{3}{2}}]$ | C. | $[{\frac{1}{2},+∞})$ | D. | $({-∞,\frac{1}{2}}]$ |
20.已知函数f(x)=|2x+1|+|2x-3|
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若对任意x∈[-$\frac{1}{2}$,1],不等式f(x)=|2x+a|-4恒成立,求实数a的取值范围.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若对任意x∈[-$\frac{1}{2}$,1],不等式f(x)=|2x+a|-4恒成立,求实数a的取值范围.
7.“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i=1,2,…,6),如表所示:
已知$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}$=80.
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程$\widehaty=\widehatbx+\widehata$;可供选择的数据:$\sum_{i=1}^6{{x_i}{y_i}}=3050$,$\sum_{i=1}^6{{x_i}^2}=271$
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi,yi)对应的残差的绝对值$|\widehat{y_i}-{y_i}|≤1$时,则将销售数据(xi,yi)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).
(参考公式:线性回归方程中$\widehatb$,$\widehata$的最小二乘估计分别为$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)
| 试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
| 产品销量y(件) | q | 84 | 83 | 80 | 75 | 68 |
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程$\widehaty=\widehatbx+\widehata$;可供选择的数据:$\sum_{i=1}^6{{x_i}{y_i}}=3050$,$\sum_{i=1}^6{{x_i}^2}=271$
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi,yi)对应的残差的绝对值$|\widehat{y_i}-{y_i}|≤1$时,则将销售数据(xi,yi)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).
(参考公式:线性回归方程中$\widehatb$,$\widehata$的最小二乘估计分别为$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)