题目内容

19.过原点的直线与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)交于M,N两点,P是双曲线上异于M,N的一点,若直线MP与直线NP的斜率都存在且乘积为$\frac{5}{4}$,则双曲线的离心率为(  )
A.$\frac{3}{2}$B.$\frac{9}{4}$C.$\frac{5}{4}$D.2

分析 设P(x0,y0),M(x1,y1),则N(x2,y2).利用kPMkPN=$\frac{5}{4}$,化简,结合平方差法求解双曲线C的离心率.

解答 解:由双曲线的对称性知,可设P(x0,y0),M(x1,y1),则N(x2,y2).
由kPMkPN=$\frac{5}{4}$,可得:$\frac{{{y_0}-{y_1}}}{{{x_0}-{x_1}}}•\frac{{{y_0}+{y_1}}}{{{x_0}+{x_1}}}=\frac{5}{4}$,即$y_0^2-y_1^2=\frac{5}{4}(x_0^2-x_1^2)$,即$\frac{5}{4}x_0^2-y_0^2=\frac{5}{4}x_1^2-y_1^2$,
又因为P(x0,y0),M(x1,y1)均在双曲线上,
所以$\frac{x_0^2}{a^2}-\frac{y_0^2}{b^2}=1$,$\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}=1$,所以${a^2}=\frac{4}{5},{b^2}=1$,
所以c2=a2+b2=$\frac{9}{5}$,所以双曲线C的离心率为e=$\frac{c}{a}$=$\frac{\frac{3}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}$=$\frac{3}{2}$.
故选:A.

点评 本题考查双曲线的简单性质的应用,平方差法的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网