题目内容
6.在△ABC中,角A,B,C的对边长分别为a,b,c,且a=2bcosB.(1)求证:A=2B或B=C;
(2)若a=3,b=2,求c的值.
分析 (1)由正弦定理可得:sin2B=sinA=sin(B+C),可得2B=A,或2B=π-A=(A+B+C)-A,即可解得A=2B或B=C.
(2)由已知及余弦定理可得$\frac{3}{4}$=$\frac{9+{c}^{2}-4}{2×3×c}$,整理可得:2c2-9c+10=0,即可解得c的值.
解答 解:(1)证明:∵a=2bcosB,由正弦定理可得:2sinBcosB=sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sin2B=sinA=sin(B+C),
∴2B=A,或2B=π-A=(A+B+C)-A,
∴A=2B或B=C,得证;
(2)∵a=3,b=2,a=2bcosB.
∴cosB=$\frac{a}{2b}$=$\frac{3}{4}$=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{9+{c}^{2}-4}{2×3×c}$,整理可得:2c2-9c+10=0,
∴解得:c=2或$\frac{5}{2}$.
点评 本题主要考查了正弦定理,余弦定理,正弦函数的图象和性质的应用,考查了计算能力和转化思想,属于中档题.
练习册系列答案
相关题目
18.已知函数f(x)=f′(1)x2+2x${∫}_{0}^{1}$f(x)dx+1在区间(a,1-2a)上单调递增,则实数a的取值范围是( )
| A. | ($\frac{1}{4}$,$\frac{1}{3}$) | B. | [$\frac{1}{4}$,$\frac{1}{3}$) | C. | (-∞,$\frac{1}{3}$) | D. | [$\frac{1}{4}$,+∞) |
9.函数y=2x-x2的大致图象是( )
| A. | B. | C. | D. |