题目内容
2.函数f(x)=3x2+ex-2(x<0)与g(x)=3x2+ln(x+t)图象上存在关于y轴对称的点,则t的取值范围是( )| A. | (-∞,$\frac{1}{e}$) | B. | (-∞,e) | C. | (-e,$\frac{1}{e}$) | D. | (-$\frac{1}{e}$,e) |
分析 若函数f(x)=3x2+ex-2(x<0)与g(x)=3x2+ln(x+t)的图象上存在关于y轴对称的点,则函数f(x)=3x2+ex-2(x<0)关于y对称后的图象与g(x)=3x2+ln(x+t)的图象有交点,进而可得实数t的取值范围.
解答
解:若函数f(x)=3x2+ex-2(x<0)与g(x)=3x2+ln(x+t)的图象上存在关于y轴对称的点,
则函数f(x)=3x2+ex-2(x<0)关于y对称后的图象与g(x)=3x2+ln(x+t)的图象有交点,
即2x2+e-x=2x2+ln(x+t)+2有正根,
即e-x=ln(x+t)+2有正根,
即e-x-2=ln(x+t)有正根,
即函数y=e-x-2和y=ln(x+t)的图象在y轴右侧有交点,
如下图所示:
由lnt=-1得:t=$\frac{1}{e}$得:满足条件的实数m的取值范围是(-∞,$\frac{1}{e}$),
故选:A.
点评 本题主要考察函数图象的对称变换,函数交点个数及位置的判定,属于中档题.
练习册系列答案
相关题目
18.若集合M={y|y=x4,x∈(-1,0)},集合$N=\left\{{x|y=ln\frac{x}{x-1}}\right\}$,则下列各式中正确的是( )
| A. | M?N | B. | N?M | C. | M∩N=ϕ | D. | M=N |
19.已知$cos({\frac{π}{4}-α})=\frac{4}{5}$,则sin2α=( )
| A. | $\frac{24}{25}$ | B. | $\frac{7}{25}$ | C. | $±\frac{24}{25}$ | D. | $±\frac{7}{25}$ |
16.在(1+x)+(1+x)2+(1+x)3+…+(1+x)11的展开式中,x2的系数是( )
| A. | 55 | B. | 66 | C. | 165 | D. | 220 |
3.某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:${\stackrel{∧}{y}}^{(1)}$=$\frac{4}{x}+1.1$,方程乙:$\stackrel{{∧}^{(2)}}{y}$=$\frac{6.4}{x^2}+1.6$.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
| 印刷册数 (千册) | 2 | 3 | 4 | 5 | 8 |
| 单册成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
| 印刷册数x(千册) | 2 | 3 | 4 | 5 | 8 | |
| 单册成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
| 模型甲 | 估计值${\stackrel{∧}{{y}_{i}}}^{(1)}$ | 2.4 | 2.1 | 1.6 | ||
| 残差${\stackrel{∧}{{e}_{i}}}^{(1)}$ | 0 | -0.1 | 0.1 | |||
| 模型乙 | 估计值 ${\stackrel{∧}{{y}_{i}}}^{(2)}$ | 2.3 | 2 | 1.9 | ||
| 残差 ${\stackrel{∧}{{e}_{i}}}^{(2)}$ | 0.1 | 0 | 0 | |||
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)