题目内容

2.函数$f(x)=Asin({ωx+φ})({x∈R,A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,如果${x_1},{x_2}∈({-\frac{π}{6},\frac{π}{3}})$,且f(x1)=f(x2),则f(x1+x2)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.再由条件利用正弦函数的图象的对称性,求得f(x1+x2)的值.

解答 解:根据函数$f(x)=Asin({ωx+φ})({x∈R,A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象,可得A=1,$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{π}{3}$+$\frac{π}{6}$,∴ω=2,
结合五点法作图可得2•(-$\frac{π}{6}$)+φ=0,∴φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$).
如果${x_1},{x_2}∈({-\frac{π}{6},\frac{π}{3}})$,且f(x1)=f(x2),结合2x+$\frac{π}{3}$∈(0,π),可得$\frac{{2x}_{1}+\frac{π}{3}+({2x}_{2}+\frac{π}{3})}{2}$=$\frac{π}{2}$,
∴x1+x2 =$\frac{π}{6}$,∴f(x1+x2)=f($\frac{π}{6}$)=sin($\frac{π}{3}$+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
故选:C.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.还考查了正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网