题目内容
9.已知x,y的取值如表所示:若y与x线性相关,且$\hat y=0.95x+2.6$,则a=4.3.| x | 0 | 1 | 3 | 4 |
| y | 2.2 | a | 4.8 | 6.7 |
分析 将样本中心$(\overline x,\overline y)$代入回归方程求出$\overline{y}$,从而得出a的值.
解答 解:$\overline{x}$=$\frac{1+3+4}{4}$=2,∴$\overline{y}$=0.95×2+2.6=4.5.
∴$\frac{2.2+a+4.8+6.7}{4}$=4.5,解得a=4.3.
故答案为4.3.
点评 本题考察查了线性回归方程与样本中心的关系,属于基础题.
练习册系列答案
相关题目
17.在平面直角坐标系中,|$\overrightarrow{a}$|=2014,$\overrightarrow{a}$与x轴非负半轴的夹角为$\frac{π}{3}$,$\overrightarrow{a}$始点与原点重合,终点在第一象限,则向量$\overrightarrow{a}$的坐标是( )
| A. | (1007$\sqrt{2}$,1007$\sqrt{2}$) | B. | (-1007$\sqrt{2}$,1007$\sqrt{2}$) | C. | (1007,1007$\sqrt{3}$) | D. | (1007$\sqrt{3}$,1007) |
17.某产品广告费用x与销售额y(单位:万元)的统计数据如表,根据如表得到回归方程$\stackrel{∧}{y}$=10.6x+a,则a=5.9.
| 广告费用x | 4 | 2 | 3 | 5 |
| 销售额y(万元) | 49 | 26 | 39 | 58 |
4.已知函数f(x)在R上满足f(-x)+f(x)=0,且x>0时,f(x)=$\frac{1}{2}$(|x+sinα|+|x+2sinα|)+$\frac{3}{2}$sinα(-$\frac{π}{2}$≤α≤$\frac{3π}{2}$)对任意的x∈R,都有f(x-3$\sqrt{3}$)≤f(x)恒成立,则实数α的取值范围为( )
| A. | [0,π] | B. | [-$\frac{π}{3}$,$\frac{2π}{3}$] | C. | [-$\frac{π}{6}$,$\frac{7π}{6}$] | D. | [-$\frac{π}{3}$,$\frac{4π}{3}$] |
14.已知x,y的取值如表:
若依据表中数据所画的散点图中,所有样本点(xi,yi)(i=1,2,3,4,5)都在曲线y=$\frac{1}{2}$x2+a附近波动,则a=1.
| x | 0 | 1 | 2 | 3 | 4 |
| y | 1 | 1.3 | 3.2 | 5.6 | 8.9 |
1.某研究机构对学生的记忆力x和判断力y进行统计分析,得下表数据:
根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+a中的b的值为0.7,则a为( )
| x | 6 | 8 | 10 | 12 |
| y | 2 | 3 | 5 | 6 |
| A. | 1.2 | B. | -1.2 | C. | -2.3 | D. | 7.5 |
19.
如图,直线在平面α外,直线m1,m2,n均在平面α内,若m1∥m2,且m1,m2均与n相交,下列能证明l⊥α的是( )
| A. | l⊥m1且l⊥m2 | B. | l⊥m1且l⊥n | C. | l⊥m1 | D. | l⊥n |