题目内容

下列四个结论:
①若x>0,则x>sinx恒成立;
②命题“若x-sinx=0,则x=0”的逆否命题为“若x≠0,则x-sinx≠0”;
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”.
其中正确结论的个数是(  )
A、1个B、2个C、3个D、4个
考点:命题的真假判断与应用
专题:阅读型,函数的性质及应用,简易逻辑
分析:令y=x-sinx,求出导数,判断单调性,即可判断①;由命题的逆否命题,先将体积、结论调换,再分别对它们否定,即可判断②;由命题p∨q为真,则p,q中至少有一个为真,不能推出p∧q为真,即可判断③;由全称性命题的否定为存在性命题,即可判断④.
解答: 解:对于①,令y=x-sinx,则y′=1-cosx≥0,则有函数y=x-sinx在R上递增,
则当x>0时,x-sinx>0-0=0,则x>sinx恒成立.则①对;
对于②,命题“若x-sinx=0,则x=0”的逆否命题为“若x≠0,则x-sinx≠0”,则②对;
对于③,命题p∨q为真,则p,q中至少有一个为真,不能推出p∧q为真,反之成立,
则应为必要不充分条件,则③错;
对于④,命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”.则④对.
综上可得,其中正确的叙述共有3个.
故选C.
点评:本题考查函数的单调性的运用,考查复合命题的真假和真值表的运用,考查充分必要条件的判断和命题的否定,属于基础题和易错题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网