题目内容

设x1与x2分别是实系数方程ax2+bx+c=0和-ax2+bx+c=0的一个实数根,且x1≠x2,x1≠0,x2≠0,求证:方程
a
2
x2
+bx+c=0有且仅有一个实数根介于x1与x2之间.
考点:函数的零点与方程根的关系
专题:证明题,函数的性质及应用
分析:先由x1与x2分别是实系数方程ax2+bx+c=0和-ax2+bx+c=0的一个根,得到关于x1与x2的两个等式,再设f(x)=
a
2
x2+bx+c,利用条件推出f(x1)f(x2)<0,即可说明方程
a
2
x2+bx+c=0有一个根介于x1和x2之间.
解答: 证明:设f(x)=
a
2
x2
+bx+c,
ax
2
1
+bx1
+c=0,-
ax
2
2
+bx2
+c=0,
a
2
x
2
1
+bx1
+c=-
a
2
x
2
1
a
2
x
2
2
+bx2
+c=
3a
2
x
2
2

f(x1)f(x2)=(
a
2
x
2
1
+bx1+c)(
a
2
x
2
2
+bx2+c)
=-
a
2
x
2
1
3a
2
x
2
2
=-
3a2
4
(x1x2)2

∵x1≠x2,∴a≠0.又x1≠0,x2≠0,
∴-
3a2
4
(x1x2)2
<0,即f(x1)f(x2)<0,
故方程f(x)=0在x1与x2之间有实数根.
若在x1与x2之间有两个实数根,则必有f(x1)f(x2)>0,矛盾,
故方程
a
2
x2
+bx+c=0有且仅有一个实数根介于x1与x2之间.
点评:本题考查一元二次方程根的分布问题.在解题过程中用到了零点存在性定理,若想说函数在某个区间上有零点,只要区间两端点值异号即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网