题目内容
9.已知函数f(x)=$\left\{\begin{array}{l}{(-1)^{n}sin\frac{πx}{2}+2n,x∈[2n,2n+1)}\\{(-1)^{n+1}sin\frac{πx}{2}+2n+2,x∈[2n+1,2n+2)}\end{array}\right.$,n∈N,若数列{an}满足am=f(m)(m∈N*),数列{an}的前m项和为Sm,则S105-S96=( )| A. | 909 | B. | 910 | C. | 911 | D. | 912 |
分析 利用已知可得:S105-S96=a97+a98+…+a105=-sin$\frac{48π}{2}$+2×48+2-$sin\frac{49π}{2}$+2×49+…-$sin\frac{52π}{2}$+2×52+2,即可得出.
解答 解:函数f(x)=$\left\{\begin{array}{l}{(-1)^{n}sin\frac{πx}{2}+2n,x∈[2n,2n+1)}\\{(-1)^{n+1}sin\frac{πx}{2}+2n+2,x∈[2n+1,2n+2)}\end{array}\right.$,n∈N,数列{an}满足am=f(m)(m∈N*),
∴S105-S96=a97+a98+…+a105=-sin$\frac{48π}{2}$+2×48+2-$sin\frac{49π}{2}$+2×49+…-$sin\frac{52π}{2}$+2×52+2=909.
故选:A.
点评 本题考查了三角函数求值、分类讨论方法、数列递推关系,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.若函数f(x)=x2由x=1至x=1+△x的平均变化率的取值范围是(1.975,2.025),则增量△x的取值范围为( )
| A. | (-0.025,0.025) | B. | (0,0.025) | C. | (0.025,1) | D. | (-0.025,0) |
19.两个相关变量满足如下关系:
则两变量的回归方程为( )
| x | 10 | 15 | 20 | 25 | 30 |
| y | 1 003 | 1 005 | 1 010 | 1 011 | 1 014 |
| A. | $\widehat{y}$=0.56x+997.4 | B. | $\widehat{y}$=0.63x-231.2 | C. | $\widehat{y}$=0.56x+501.4 | D. | $\widehat{y}$=60.4x+400.7 |