题目内容

7.若x>0,y>0,$\frac{4}{x}$+$\frac{1}{y}$=$\frac{1}{4}$,则x+4y的最小值为64.

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵x>0,y>0,$\frac{4}{x}$+$\frac{1}{y}$=$\frac{1}{4}$,
则x+4y=4(x+4y)$(\frac{4}{x}+\frac{1}{y})$=4(8+$\frac{16y}{x}+\frac{x}{y}$)≥4$(8+2\sqrt{\frac{16y}{x}•\frac{x}{y}})$=64,当且仅当x=4y=32时取等号.
故答案为:64.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网