题目内容

6.已知函数$f(x)=2cos\frac{x}{2}(\sqrt{3}sin\frac{x}{2}+cos\frac{x}{2})-1,x∈R$.
(1)求f(x)的最小正周期;
(2)设$α,β∈({0,\frac{π}{2}}),f(α)=2,f(β)=\frac{6}{5}$,求f(α+β)的值.

分析 (1)利用倍角公式与和差公式、三角函数的周期公式即可得出;
(2)由已知求值α,β,再利用和差公式即可得出.

解答 解:(1)∵$f(x)=2cos\frac{x}{2}(\sqrt{3}sin\frac{x}{2}+cos\frac{x}{2})-1=\sqrt{3}(2sin\frac{x}{2}cos\frac{x}{2})+(2{cos^{\;}}\frac{x}{2}-1)$=$\sqrt{3}sinx+cosx=2sin(x+\frac{π}{6})$,
∴f(x)的最小正周期T=2π
(2)∵f(α)=2,即$sin(α+\frac{π}{6})=1,由于α∈({0,\frac{π}{2}}),则\frac{π}{6}<α+\frac{π}{6}<\frac{2π}{3}$,
∴$α+\frac{π}{6}=\frac{π}{2},即α=\frac{π}{3}$.
 又∵$f(β)=\frac{6}{5}$,即$sin(α+\frac{π}{6})=\frac{3}{5},由于β∈({0,\frac{π}{2}})$,
∴$\frac{π}{6}<β+\frac{π}{6}<\frac{2π}{3}$,
∵$\frac{3}{5}<\frac{{\sqrt{3}}}{2},则\frac{π}{6}<β+\frac{π}{6}<\frac{π}{2},则cos(α+\frac{π}{6})=\frac{4}{5}$,
∴$f(α+β)=2sin(α+β+\frac{π}{6})=2sin(\frac{π}{2}+β)=2cosβ=2cos[(β+\frac{π}{6})-\frac{π}{6}]$
=$2cos(β+\frac{π}{6})cos\frac{π}{6}+2sin(β+\frac{π}{6})sin\frac{π}{6}=\frac{{4\sqrt{3}+3}}{5}$.

点评 本题考查了倍角公式、和差公式、三角函数的图象与性质、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网