题目内容

某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期的图象时,列表并填入的部分数据如下表:
x
3
x1
3
x2x3
ωx+φ0
π
2
π
2
Asin(ωx+φ)020-20
(Ⅰ)求x1,x2,x3的值及函数f(x)的表达式;
(Ⅱ)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,求函数y=f(x)•g(x)在区间(0,
3
)的最小值.
考点:五点法作函数y=Asin(ωx+φ)的图象,函数y=Asin(ωx+φ)的图象变换
专题:计算题,三角函数的图像与性质
分析:(Ⅰ)由
3
ω+
φ=0,
3
ω+
φ=0可得ω,φ的值,由
1
2
x1-
π
3
=
π
2
1
2
x2-
π
3
=
2
1
2
x3-
π
3
=2π可得:x1,x2,x3的值,又由Asin(
1
2
×
3
-
π
3
)=2可求A的值,从而求得解析式f(x)=2sin(
1
2
x-
π
3
).
(Ⅱ)先求解析式g(x)=f(x)=2cos(
x
2
-
π
3
),从而可得解析式y=f(x)•g(x)=2sin(x-
3
),即可求解.
解答: (本小题满分13分)
解:(Ⅰ)由
3
ω+
φ=0,
3
ω+
φ=0可得:ω=
1
2
,φ=-
π
3
,…(2分)
1
2
x1-
π
3
=
π
2
1
2
x2-
π
3
=
2
1
2
x3-
π
3
=2π可得:
x1=
3
,x2=
11π
3
,x3=
14π
3

又∵Asin(
1
2
×
3
-
π
3
)=2,
∴A=2.
∴f(x)=2sin(
1
2
x-
π
3
),…(6分)
(Ⅱ)由f(x)=2sin(
1
2
x-
π
3
)的图象向左平移π个单位,
得g(x)=f(x)=2sin(
1
2
x-
π
3
+
π
2
)=2cos(
x
2
-
π
3
)的图象,…(8分)
∴y=f(x)•g(x)=2×2sin(
x
2
-
π
3
)cos(
x
2
-
π
3
)=2sin(x-
3
)…(10分)
∵x∈(0,
3
)时,x-
3
∈(-
3
,π)
∴当x-
3
=-
π
2
时,即x=
π
6
时,ymin=-2,…(13分)
注:若用f(x)=4sin(
1
2
x-
π
3
)sin(
1
2
x+
π
6
)
运算,请参照给分.
点评:本题主要考察了五点法作函数y=Asin(ωx+φ)的图象,函数y=Asin(ωx+φ)的图象变换,三角函数的图象与性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网