题目内容
7.已知f(x)为偶函数,f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2x,则f(2011)=$\frac{1}{2}$.分析 先利用f(x)为偶函数以及f(2+x)=f(2-x),求出函数的周期为4;由周期为4可得f(2011)=f(-1+4×503)=f(-1)=2-1=$\frac{1}{2}$,即可得答案.
解答 解:根据题意,∵f(2+x)=f(2-x),
∴f(x)=f(4-x),
又∵f(x)为偶函数,
∴f(x)=f(-x)
∴f(-x)=f(4-x).即函数的周期T=4.
则f(2011)=f(-1+4×503)=f(-1)=2-1=$\frac{1}{2}$,
即f(2011)=$\frac{1}{2}$;
故答案为:$\frac{1}{2}$.
点评 本题考查函数的奇偶性的应用,涉及抽象函数的应用,关键是求出函数的周期.
练习册系列答案
相关题目
4.要得到函数y=$\sqrt{2}$cos2x的图象,只需将函数y=$\sqrt{2}$sin(4x+$\frac{π}{4}$)的图象上所有点的( )
| A. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度 | |
| B. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平行移动$\frac{π}{4}$个单位长度 | |
| C. | 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度 | |
| D. | 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{4}$个单位长度 |
1.为了了解某地区心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查,得到了如下的2×2列联表:
(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算统计量k2,判断心肺疾病与性别是否有关?
附:临界值表参考公式:k2=$\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
| 患心肺疾病 | 患心肺疾病 | 合计 | |
| 男 | 20 | 5 | 25 |
| 女 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
(2)在上述抽取的6人中选2人,求恰有一名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算统计量k2,判断心肺疾病与性别是否有关?
| p(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
12.设等差数列{an}的前n项和为Sn,且满足S2015>0,S2016<0,若对任意正整数n,都有|an|≥|ak|,则k的值为( )
| A. | 1006 | B. | 1007 | C. | 1008 | D. | 1009 |
19.已知函数f(x)=|x|(1+ax),设关于x的不等式f(x+a)>f(x)对任意x∈R恒成立,则实数a的取值范围是( )
| A. | (-∞,-1)∪(1,+∞) | B. | (-1,0)∪(0,1) | C. | (1,+∞) | D. | (0,1) |