题目内容
10.求定积分${∫}_{-1}^{0}$$\frac{{x}^{2}}{{x}^{2}+2x}$dx的值.分析 变形可得原式=${∫}_{-1}^{0}$(1-$\frac{2x}{{x}^{2}+2x}$)dx=${∫}_{-1}^{0}$(1-$\frac{2}{x+2}$)dx=${∫}_{-1}^{0}$dx-${∫}_{-1}^{0}$$\frac{2}{x+2}$dx=[x-2ln(x+2)]${|}_{-1}^{0}$,代值计算可得.
解答 解:${∫}_{-1}^{0}$$\frac{{x}^{2}}{{x}^{2}+2x}$dx=${∫}_{-1}^{0}$$\frac{{x}^{2}+2x-2x}{{x}^{2}+2x}$dx
=${∫}_{-1}^{0}$(1-$\frac{2x}{{x}^{2}+2x}$)dx=${∫}_{-1}^{0}$(1-$\frac{2}{x+2}$)dx
=${∫}_{-1}^{0}$dx-${∫}_{-1}^{0}$$\frac{2}{x+2}$dx=[x-2ln(x+2)]${|}_{-1}^{0}$
=(0-2ln2)-(-1-2ln1)=1-2ln2
点评 本题考查定积分的求解,属基础题.
练习册系列答案
相关题目
1.曲线y=sin(2x+$\frac{π}{6}$)的一条对称轴是( )
| A. | y=-$\frac{5π}{12}$ | B. | x=$\frac{5π}{12}$ | C. | x=-$\frac{7π}{6}$ | D. | x=$\frac{7π}{6}$ |
5.已知数列{an}中,a1=1,a2=3,an=an-1+$\frac{1}{{a}_{n-2}}$(n≥3),则a4等于( )
| A. | $\frac{55}{12}$ | B. | $\frac{13}{3}$ | C. | 4 | D. | 5 |
15.定义在R上的函数f(x)、g(x)满足:对任意的实数x都有f(x)=f(|x|),g(-x)+g(x)=0,当x>0时.f′(x)>0,g′(x)<0,则当x<0时,有( )
| A. | f′(x)>0,g′(x)>0 | B. | f′(x)>0,g′(x)<0 | C. | f′(x)<0,g′(x)<0 | D. | f′(x)<0,g′(x)>0 |
2.下列参数方程(t为参数)与普通方程x2-y=0表示同一曲线的方程是( )
| A. | $\left\{\begin{array}{l}x=tant\\ y=\frac{1+cos2t}{1-cos2t}\end{array}$ | B. | $\left\{\begin{array}{l}x=tant\\ y=\frac{1-cos2t}{1+cos2t}\end{array}$ | ||
| C. | $\left\{\begin{array}{l}{x=|t|}\\{y={t}^{2}}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=cost}\\{y=co{s}_{\;}^{2}t}\end{array}\right.$. |