题目内容

已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(
b
a
)
考点:不等式的证明,绝对值不等式,绝对值不等式的解法
专题:不等式
分析:(Ⅰ)根据绝对值不等式的解法解不等式f(x-1)+f(x+3)≥6即可;
(Ⅱ)利用分析法 进行证明不等式.
解答: 解:( I)∵f(x)=|x-1|.
∴不等式f(x-1)+f(x+3)≥6等价|x-2|+|x+2|≥6,
若当x≥2时,不等式等价为x-2+x+2≥6,
即2x≥6,解得x≥3.
当-2<x<2时,不等式等价为2-x+x+2≥6,
即4≥6,此时不成立.
当x≤-2时,不等式等价为2-x-x-2≥6,
即2x≤-6,即x≤-3.
综上不等式的解集为(-∞,-3]∪[3,+∞).
( II)要证f(ab)>|a|f(
b
a
)

只需证|ab-1|>|b-a|,
只需证(ab-1)2>(b-a)2
而(ab-1)2-(b-a)2=a2b2-a2-b2+1=(a2-1)(b2-1)>0,
∵|a|<1,|b|<1,
∴a2<1,b2<1,
即a2-1<0,b2-1<0,
即(a2-1)(b2-1)>0,成立,
从而原不等式成立.
点评:本题主要考查绝对值不等式的解法,要注意进行分段讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网