题目内容
14.已知$f(x)=\left\{\begin{array}{l}{2^x}-3,x>0\\ g(x),x<0\end{array}\right.$是奇函数,则f(g(-2))=1.分析 根据函数奇偶性的性质进行转化求解即可.
解答 解:∵f(x)是奇函数,
∴g(-2)=f(-2)=-f(2)=-(22-3)=-1,
则f(-1)=-f(1)=-(2-3)=1,
故f(g(-2))=1,
故答案为:1
点评 本题主要考查函数值的计算,根据函数奇偶性的性质进行转化是解决本题的关键.
练习册系列答案
相关题目
4.已知正实数x,y满足$\frac{2}{x}+\frac{1}{y}=1$,若x+2y>m2+2m恒成立,则实数m的取值范围是( )
| A. | (-2,4) | B. | (-4,2) | C. | (-∞,2]∪[4,+∞) | D. | (-∞,-4]∪[2,+∞) |
2.实数x,y满足$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≥0}\\{x+y-2≤0}\end{array}\right.$,则y-4x的取值范围是( )
| A. | (-∞,4] | B. | (-∞,7] | C. | [-$\frac{1}{2}$,4] | D. | [-$\frac{1}{2}$,7] |