题目内容

6.已知变换T将平面上的点$({1,\frac{1}{2}}),({0,1})$分别变换为点$({\frac{9}{4},-2}),({-\frac{3}{2},4})$.设变换T对应的矩阵为M.
(1)求矩阵M;
(2)求矩阵M的特征值.

分析 (1)设M=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,由矩阵变换可得方程组,解方程即可得到所求;
(2)设矩阵M的特征多项式为f(λ),可得特征多项式,解方程可得特征值.

解答 解:(1)设M=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,则$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{1}\\{\frac{1}{2}}\end{array}]$=$[\begin{array}{l}{\frac{9}{4}}\\{-2}\end{array}]$,
$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{0}\\{1}\end{array}]$=$[\begin{array}{l}{-\frac{3}{2}}\\{4}\end{array}]$,
即为$\left\{\begin{array}{l}{a+\frac{1}{2}b=\frac{9}{4}}\\{c+\frac{1}{2}d=-2}\\{b=-\frac{3}{2}}\\{d=4}\end{array}\right.$,即a=3,b=-$\frac{3}{2}$,c=-4,d=4,
则M=$[\begin{array}{l}{3}&{-\frac{3}{2}}\\{-4}&{4}\end{array}]$;
(2)设矩阵M的特征多项式为f(λ),
可得f(λ)=$|\begin{array}{l}{λ-3}&{\frac{3}{2}}\\{4}&{λ-4}\end{array}|$=(λ-3)(λ-4)-6=λ2-7λ+6,
令f(λ)=0,可得λ=1或λ=6.

点评 本题考查矩阵变换和特征值的求法,注意运用待定系数法,考查方程思想的运用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网