题目内容

2.实数x,y满足$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≥0}\\{x+y-2≤0}\end{array}\right.$,则y-4x的取值范围是(  )
A.(-∞,4]B.(-∞,7]C.[-$\frac{1}{2}$,4]D.[-$\frac{1}{2}$,7]

分析 根据约束条件画出可行域,然后分析平面区域里各个点,然后将其代入y-4x中,求出y-4x的取值范围.

解答 解:根据约束条件画出可行域
由图得当z=y-4x过点A(-1,0)时,Z最大为4,无最小值
故所求y-4x的取值范围是(-∞,4].
故选:A

点评 在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网