题目内容
16.已知a=cos17°cos23°-sin17°sin23°,b=2cos225°-1,c=$\frac{{\sqrt{3}}}{2}$,则a,b,c的大小关系( )| A. | b>a>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
分析 利用两角差的余弦函数公式,二倍角的余弦函数公式,特殊角的三角函数值及余弦函数的单调性即可得解.
解答 解:∵a=cos17°cos23°-sin17°sin23°=cos(17°+23°)=cos40°,
b=2cos225°-1=cos50°.
c=$\frac{{\sqrt{3}}}{2}$=cos30°,
由于cosx在(0°,90°)单调递减,可得cos30°>cos40°>cos50°.
∴b<a<c.
故选:C.
点评 本题主要考查了两角差的余弦函数公式,二倍角的余弦函数公式,特殊角的三角函数值及余弦函数的单调性的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
7.已知角α的终边经过点(-4,-3),那么tanα等于( )
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
4.已知直线x+2ay-1=0与直线x-4y=0平行,则a的值为( )
| A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
6.已知$|{\vec a}|=1$,$|{\vec b}|=2$,$\vec a(\vec a-\vec b)=3$则$\vec a$与$\vec b$的夹角为( )
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{2}$ | D. | π |