题目内容

已知P是椭圆
x2
100
+
y2
36
=1
上一点,F1、F2分别是椭圆的左、右焦点,若∠F1PF2=60°,则△PF1F2的面积为
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:依题意,在△F1PF2中,∠F1PF2=60°,|F1P|+|PF2|=2a=20,|F1F2|=16,利用余弦定理可求得|F1P|•|PF2|的值,从而可求得△PF1F2的面积.
解答: 解:∵椭圆的方程为
x2
100
+
y2
36
=1

∴a=10,b=6,c=8.
又∵P为椭圆上一点,∠F1PF2=60°,F1、F2为左右焦点,
∴|F1P|+|PF2|=2a=20,|F1F2|=16,
∴|F1F2|2=(|PF1|+|PF2|)2-2|F1P||PF2|-2|F1P|•|PF2|cos60°
=400-3|F1P|•|PF2|
=256,
∴|F1P|•|PF2|=48.
S△PF1F2=
1
2
|F1P|•|PF2|sin60°
=
1
2
×48×
3
2
=12
3

故答案为:12
3
点评:本题考查椭圆的简单性质,考查余弦定理的应用与三角形的面积公式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网