题目内容

20.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1>0}\\{x<2}\\{x+y-1>0}\end{array}\right.$,若z=2x-2y-1,则z的取值范围为(  )
A.(-$\frac{5}{3}$,5)B.(-$\frac{5}{3}$,0)C.[0,5]D.[-$\frac{5}{3}$,5]

分析 根据画出不等式组表示的平面区域,利用数形结合结合目标函数的意义,利用平移即可得到结论

解答 解:不等式对应的平面区域如图:(阴影部分).
由z=2x-2y-1得y=x-$\frac{1+z}{2}$,平移直线y=x-$\frac{1+z}{2}$,
由平移可知当直线y=x-$\frac{1+z}{2}$,经过点A(2,-1)时,
直线y=x-$\frac{1+z}{2}$的截距最小,此时z取得最大值,
此时z=2x-2y-1=4+2-1=5,
可知当直线y=x-$\frac{1+z}{2}$,经过点C时,
直线y=x-$\frac{1+z}{2}$的截距最大,此时z取得最小值,
由$\left\{\begin{array}{l}{x-2y+1=0}\\{x+y-1=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,即A($\frac{1}{3}$,$\frac{2}{3}$)
代入z=2x-2y-1得z=2×$\frac{1}{3}$-2×$\frac{2}{3}$-1=-$\frac{5}{3}$,
故z∈(-$\frac{5}{3}$,5).
故选:A.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网