题目内容
数列{an}满足a1=
,an-an-1=-
,n≥2且n∈N+.
(I)求数列{an}的通项公式;
(Ⅱ)记bn=log3
,数列{
}的前n项和是Tn,证明:Tn<
.
| 2 |
| 3 |
| 4 |
| 3n |
(I)求数列{an}的通项公式;
(Ⅱ)记bn=log3
| an2 |
| 4 |
| 1 |
| bn•bn+2 |
| 3 |
| 16 |
考点:等差数列与等比数列的综合,等差数列的通项公式,数列递推式
专题:综合题,等差数列与等比数列
分析:运用等差数列的性质,运算求解,注意累加法的运用,裂项法的运用.
解答:
解:(1)∵a2-a1=-
,a3-a2=-
,…an-an-1=-
,加起来得;an-
=-4(
+
+…+
)
运用等比数列的求和公式化简得:an=
,
(2)证明:∵bn=log3
=log3
=log
=-2n
∴
=
=
(
-
)
可得:Tn=
(1-
+
-
+
-
+…+
-
)
=
(1+
-
-
)<
×
=
即Tn<
成立.
| 4 |
| 32 |
| 4 |
| 33 |
| 4 |
| 3n |
| 2 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
运用等比数列的求和公式化简得:an=
| 2 |
| 3n |
(2)证明:∵bn=log3
| an2 |
| 4 |
| ||
| 4 |
3-2n 3 |
∴
| 1 |
| bn•bn+2 |
| 1 |
| 4•n(n+2) |
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+2 |
可得:Tn=
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 8 |
| 3 |
| 2 |
| 3 |
| 16 |
即Tn<
| 3 |
| 16 |
点评:本题综合考查了数列的运算性质,化简技巧.
练习册系列答案
相关题目
一个三角形的两个内角为45°和30°,如果45°角所对的边长是则30°角所对的边长为( )
A、2
| ||
B、3
| ||
C、
| ||
D、3
|
若定义域在[0,1]的函数f(x)满足:
①对于任意x1,x2∈[0,1],当x1<x2时,都有f(x1)≥f(x2);
②f(0)=0;
③f(
)=
f(x);
④f(1-x)+f(x)=-1,
则f(
)+f(
)=( )
①对于任意x1,x2∈[0,1],当x1<x2时,都有f(x1)≥f(x2);
②f(0)=0;
③f(
| x |
| 3 |
| 1 |
| 2 |
④f(1-x)+f(x)=-1,
则f(
| 1 |
| 3 |
| 9 |
| 2014 |
A、-
| ||
B、-
| ||
C、-
| ||
D、-
|