题目内容

对任意实数k,直线y=kx+1与圆x2+y2=4的位置关系一定是(  )
A、相离B、相切
C、相交且不过圆心D、相交且过圆心
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=4内,故可得结论
解答: 解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在
∵(0,1)在圆x2+y2=4内
∴对任意的实数k,直线y=kx+1与圆x2+y2=4的位置关系一定是相交但直线不过圆心.
故选:C.
点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网