题目内容

4.已知函数$f(x)=\frac{a}{x}+({1-a})x$(其中a为非零实数),且方程$xf({\frac{1}{x}})=4x-3$有且仅有一个实数根.
(Ⅰ)求实数a的值;
(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.

分析 (Ⅰ)根据二次函数的性质得到△=0,求出a的值即可;(Ⅱ)根据函数单调性的定义证明函数的单调性即可.

解答 解:(Ⅰ)由$xf({\frac{1}{x}})=4x-3$,得$x({ax+\frac{1-a}{x}})=4x-3$,
又a≠0,即二次方程ax2-4x+4-a=0有且仅有一个实数根(且该实数根非零),
所以△=(-4)2-4a(4-a)=0,
解得a=2(此时实数根非零).   
(Ⅱ)由(Ⅰ)得:函数解析式$f(x)=\frac{2}{x}-x$,
任取0<x1<x2
则f(x1)-f(x2
=$\frac{{2({x_2}-{x_1})}}{{{x_1}{x_2}}}+({x_2}-{x_1})$
=$({x_2}-{x_1})•\frac{{({2+{x_1}{x_2}})}}{{{x_1}{x_2}}}$,
∵0<x1<x2,∴x2-x1>0,2+x1x2>0,x1x2>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴函数f(x)在区间(0,+∞)上单调递减.

点评 本题考查了函数的单调性的证明,考查二次函数的性质,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网