题目内容

15.已知函数f(x)=$\frac{1}{x}$
(1)利用定义法求函数f(x)=$\frac{1}{x}$的导函数
(2)求曲线f(x)=$\frac{1}{x}$过(2,0)的切线方程
(3)求(2)的切线与曲线$f(x)=\frac{1}{x}$及直线x=2所围成的曲边图形的面积.

分析 (1)利用定义法直接求解函数的导数即可.
(2)设出切点坐标,求出曲线的斜率,然后求解切线方程.
(3)利用定积分求解曲边梯形的面积即可.

解答 解:(1)$△y=\frac{1}{x+△x}-\frac{1}{x}=\frac{-△x}{x(x+△x)}$(1分)
$\frac{△y}{△x}=\frac{-△x}{x(x+△x)△x}=\frac{-1}{x(x+△x)}$(2分)
$f'(x)=\lim_{△x→∞}\frac{△y}{△x}=\lim_{△x→∞}\frac{-1}{x(x+△x)}=-\frac{1}{x^2}$(3分)
(2)设切点P(x0,y0),因为$y'=-\frac{1}{x^2}$(4分)
∴$k=-\frac{1}{{{x_0}^2}}$,切线方程$y=-\frac{1}{{{x_0}^2}}(x-2)⇒y=-\frac{1}{{{x_0}^2}}x+\frac{2}{{{x_0}^2}}$
则$\left\{\begin{array}{l}{y_0}=-\frac{1}{{{x_0}^2}}{x_0}+\frac{2}{{{x_0}^2}}\\{y_0}=\frac{1}{x_0}\end{array}\right.$(5分)
$⇒\frac{2}{x_0}=\frac{2}{{{x_0}^2}}⇒{x_0}=1$
所以切线方程y=-x+2(6分)
(3)$\left\{\begin{array}{l}{y=-x+2}\\{y=\frac{1}{x}}\end{array}\right.$,解得x=1,交点坐标(1,1)
$S=\int_1^2{(\frac{1}{x}+x-2)dx}$(7分)
=${∫}_{1}^{2}\frac{1}{x}dx$+${∫}_{1}^{2}xdx$$-2{∫}_{1}^{2}dx$
=$lnx{|}_{1}^{2}$+$\frac{1}{2}{x}^{2}{|}_{1}^{2}$-2x${|}_{1}^{2}$
=ln2-ln1+$\frac{1}{2}(4-1)$-2(2-1)
=ln2-$\frac{1}{2}$(10分)

点评 本题考查函数的导数的应用,切线方程的求法,定积分的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网