ÌâÄ¿ÄÚÈÝ
11£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tÊDzÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£®£¨¢ñ£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãPµÄÖ±½Ç×ø±êΪ£¨1£¬1£©£¬Ö±ÏßlÓëÇúÏßCµÄ½»µãΪA£¬B£¬Çó|PA|•|PB|µÄÖµ£®
·ÖÎö £¨¢ñ£©¸ù¾ÝÖ±ÏߵIJÎÊý·½³Ì¼´¿ÉÇóµÃÆÕͨ·½³Ì£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÇóµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóµÃAºÍBµã×ø±ê£¬´úÈëÔ²µÄ·½³Ì£¬¼´¿É¸ù¾ÝΤ´ï¶¨Àí¼´¿ÉÇóµÃt1t2=-2£¬Ôò|PA|•|PB|=Øt1t2Ø£®
½â´ð ½â£º£¨¢ñ£©Ö±ÏßlµÄÆÕͨ·½³ÌΪx-y=0£¬ÓɦÑ=4cos¦È£¬Ôò¦Ñ2=4¦Ñcos¦È£¬¼´x2+y2-4x=0£¬
¹ÊÇúÏßCµÄÖ±½Ç×ø±ê·½³Ìx2+y2-4x=0£¬
£¨¢ò£©ÓɵãA£¬B¶¼ÔÚÖ±ÏßlÉÏ£¬ÔòÉèËüÃǶÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬
ÔòµãA£¬BµÄ×ø±êΪA£¨1+$\frac{\sqrt{2}}{2}$t1£¬1+$\frac{\sqrt{2}}{2}$t1£©£¬B£¨1+$\frac{\sqrt{2}}{2}$t2£¬1+$\frac{\sqrt{2}}{2}$t2£©£¬
½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²·½³ÌΪx2+y2-4x=0£¬
ÕûÀíµÃt2-2=0£¬¢Ù
ÓÉt1£¬t2·Ö±ðÊÇ·½³Ì¢ÙµÄ½â£¬´Ó¶øt1t2=-2£¬
¹Ê|PA|•|PB|=Øt1t2Ø=2£¬
|PA|•|PB|µÄÖµ2£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®Ëæ×Å¡°È«Ãæ¶þº¢¡±Õþ²ßÍÆÐУ¬ÎÒÊн«ÓÀ´ÉúÓý¸ß·å£®½ñÄêдºÒÁʼ£¬Èª³Ç¸÷Ò½Ôº²ú¿Æ¾ÍÒѾÊÇһƬæµÖÁ½ñÈȶȲ»¼õ£®ÎÀÉú²¿ÃŽøÐе÷²éͳ¼ÆÆÚ¼ä·¢ÏÖ¸÷Ò½ÔºµÄÐÂÉú¶ùÖУ¬²»ÉÙ¶¼ÊÇ¡°¶þº¢¡±£»ÔÚÊеÚÒ»Ò½Ôº£¬¹²ÓÐ40¸öºï±¦±¦½µÉú£¬ÆäÖÐ10¸öÊÇ¡°¶þº¢¡±±¦±¦£»
£¨¢ñ£©´ÓÁ½¸öÒ½Ôºµ±Ç°³öÉúµÄËùÓᦱ¦Öа´·Ö²ã³éÑù·½·¨³éÈ¡7¸ö±¦±¦×ö½¡¿µ×Éѯ£¬
¢ÙÔÚÊеÚÒ»Ò½Ôº³öÉúµÄÒ»º¢±¦±¦ÖгéÈ¡¶àÉÙ¸ö£¿
¢ÚÈô´Ó7¸ö±¦±¦ÖгéÈ¡Á½¸ö±¦±¦½øÐÐÌå¼ì£¬ÇóÕâÁ½¸ö±¦±¦Ç¡³öÉú²»Í¬Ò½ÔºÇÒ¾ùÊô¡°¶þº¢¡±µÄ¸ÅÂÊ£»
£¨II£©¸ù¾ÝÒÔÉÏÊý¾Ý£¬ÄÜ·ñÓÐ85%µÄ°ÑÎÕÈÏΪһº¢»ò¶þº¢±¦±¦µÄ³öÉúÓëÒ½ÔºÓйأ¿
K2=$\frac{{n£¨ad-bc{£©^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®
£¨¢ñ£©´ÓÁ½¸öÒ½Ôºµ±Ç°³öÉúµÄËùÓᦱ¦Öа´·Ö²ã³éÑù·½·¨³éÈ¡7¸ö±¦±¦×ö½¡¿µ×Éѯ£¬
¢ÙÔÚÊеÚÒ»Ò½Ôº³öÉúµÄÒ»º¢±¦±¦ÖгéÈ¡¶àÉÙ¸ö£¿
¢ÚÈô´Ó7¸ö±¦±¦ÖгéÈ¡Á½¸ö±¦±¦½øÐÐÌå¼ì£¬ÇóÕâÁ½¸ö±¦±¦Ç¡³öÉú²»Í¬Ò½ÔºÇÒ¾ùÊô¡°¶þº¢¡±µÄ¸ÅÂÊ£»
£¨II£©¸ù¾ÝÒÔÉÏÊý¾Ý£¬ÄÜ·ñÓÐ85%µÄ°ÑÎÕÈÏΪһº¢»ò¶þº¢±¦±¦µÄ³öÉúÓëÒ½ÔºÓйأ¿
| P£¨k¡ÝkÊУ© | 0.40 | 0.25 | 0.15 | 0.10 |
| kÊÐ | 0.708 | 1.323 | 2.072 | 2.706 |
6£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | СÓÚ90¡ãµÄ½ÇÊÇÈñ½Ç | |
| B£® | ¶Û½Ç±ØÊǵڶþÏóÏ޽ǣ¬µÚ¶þÏóÏ޽DZØÊÇ¶Û½Ç | |
| C£® | µÚÈýÏóÏ޵ĽǴóÓÚµÚ¶þÏóÏÞµÄ½Ç | |
| D£® | ½Ç¦ÁÓë½Ç¦ÂµÄÖÕ±ßÏàͬ£¬½Ç¦ÁÓë½Ç¦Â¿ÉÄܲ»ÏàµÈ |
16£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬$\overrightarrow{AN}=\frac{1}{4}\overrightarrow{NC}$£¬PÊÇBNÉϵÄÒ»µã£¬Èô$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{2}{11}\overrightarrow{AC}$£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©

| A£® | $\frac{9}{11}$ | B£® | $\frac{2}{11}$ | C£® | $\frac{3}{11}$ | D£® | $\frac{1}{11}$ |
3£®
ÈçͼËùʾ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖÏß»³öµÄÊÇijÈýÀâ×¶ÃæÌåµÄÈýÊÓͼ£¬Ôò¸ÃÈýÀâ×¶µÄ±íÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 2£¨1+2$\sqrt{2}$+$\sqrt{3}$£© | B£® | 2£¨1+$\sqrt{2}$+$\sqrt{3}$£© | C£® | $4{+}2\sqrt{6}$ | D£® | 4£¨1+$\sqrt{2}$£© |
20£®ÒÑÖªÒ»×éÊý¾Ý3¡¢4¡¢5¡¢s¡¢tµÄƽ¾ùÊýÊÇ4£¬ÖÐλÊýÊÇm£¬¶ÔÓÚÈÎÒâʵÊýs¡¢t£¬´Ó3¡¢4¡¢5¡¢s¡¢t¡¢mÕâ×éÊý¾ÝÖÐÈÎȡһ¸ö£¬È¡µ½Êý×Ö4µÄ¸ÅÂʵÄ×î´óֵΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{6}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{2}{3}$ |
1£®
Èçͼ£¬ÔÚбÈýÀâÖùÖÐABC-A1B1C1ÖУ¬¡ÏBAC=90¡ã£¬BC1¡ÍAC£¬µãPΪAC1ÉϵÄÒ»¸ö¶¯µã£¬ÔòµãPÔÚµ×ÃæABCÉϵÄÉäÓ°H±ØÔÚ£¨¡¡¡¡£©
| A£® | Ö±ÏßABÉÏ | B£® | Ö±ÏßBCÉÏ | C£® | Ö±ÏßACÉÏ | D£® | ¡÷ABCÄÚ²¿ |