ÌâÄ¿ÄÚÈÝ

11£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tÊDzÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£®
£¨¢ñ£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãPµÄÖ±½Ç×ø±êΪ£¨1£¬1£©£¬Ö±ÏßlÓëÇúÏßCµÄ½»µãΪA£¬B£¬Çó|PA|•|PB|µÄÖµ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÖ±ÏߵIJÎÊý·½³Ì¼´¿ÉÇóµÃÆÕͨ·½³Ì£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÇóµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóµÃAºÍBµã×ø±ê£¬´úÈëÔ²µÄ·½³Ì£¬¼´¿É¸ù¾ÝΤ´ï¶¨Àí¼´¿ÉÇóµÃt1t2=-2£¬Ôò|PA|•|PB|=Ø­t1t2Ø­£®

½â´ð ½â£º£¨¢ñ£©Ö±ÏßlµÄÆÕͨ·½³ÌΪx-y=0£¬ÓɦÑ=4cos¦È£¬Ôò¦Ñ2=4¦Ñcos¦È£¬¼´x2+y2-4x=0£¬
¹ÊÇúÏßCµÄÖ±½Ç×ø±ê·½³Ìx2+y2-4x=0£¬
£¨¢ò£©ÓɵãA£¬B¶¼ÔÚÖ±ÏßlÉÏ£¬ÔòÉèËüÃǶÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬
ÔòµãA£¬BµÄ×ø±êΪA£¨1+$\frac{\sqrt{2}}{2}$t1£¬1+$\frac{\sqrt{2}}{2}$t1£©£¬B£¨1+$\frac{\sqrt{2}}{2}$t2£¬1+$\frac{\sqrt{2}}{2}$t2£©£¬
½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²·½³ÌΪx2+y2-4x=0£¬
ÕûÀíµÃt2-2=0£¬¢Ù
ÓÉt1£¬t2·Ö±ðÊÇ·½³Ì¢ÙµÄ½â£¬´Ó¶øt1t2=-2£¬
¹Ê|PA|•|PB|=Ø­t1t2Ø­=2£¬
|PA|•|PB|µÄÖµ2£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø