题目内容

13.如图所示三棱柱ABC-A1B1C1中,AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,AC⊥CD.
(Ⅰ)若AA1=AC,求证:AC1⊥平面A1B1CD;
(Ⅱ)若A1D与BB1所成角的余弦值为$\frac{\sqrt{21}}{7}$,求二面角C-A1D-C1的余弦值.

分析 (Ⅰ)由AA1=AC,根据线面垂直的判定定理即可证明AC1⊥平面A1B1CD.
(Ⅱ)建立以C为坐标原点,CD,CB,CC1分别为x,y,z轴的空间直角坐标系,利用向量法能求出二面角C-A1D-C1的余弦值.

解答 证明:(Ⅰ)若AA1=AC,则四边形ACC1A1为正方形,则AC1⊥A1C,
∵AD=2CD,AC⊥CD,∴△ACD为直角三角形,则AC⊥CD,
∵AA1⊥平面ABC,∴CD⊥平面ACC1A1,则CD⊥A1C,
∵A1C∩CD=C,∴AC1⊥平面A1B1CD;
解:(Ⅱ)∵AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,AC⊥CD.
∴建立以C为坐标原点,CD,CB,CC1分别为x,y,z轴的空间直角坐标系,如图,
设CD=1,则AD=2,AC=$\sqrt{3}$,
∵A1D与BB1所成角的余弦值为$\frac{\sqrt{21}}{7}$,∴$\frac{A{A}_{1}}{{A}_{1}D}$=$\frac{\sqrt{21}}{7}$,
又${A}_{1}{D}^{2}={A}_{1}{A}^{2}+4$,解得A1D=$\sqrt{7}$,∴AA1=$\sqrt{3}$,
则C(0,0,0),D(1,0,0),A(0,$\sqrt{3}$,0),C1(0,0,$\sqrt{3}$),A1(1,2,$\sqrt{3}$),
$\overrightarrow{{A}_{1}D}$=(0,-2,-$\sqrt{3}$),$\overrightarrow{{A}_{1}C}$=(-1,-2,-$\sqrt{3}$),$\overrightarrow{{A}_{1}{C}_{1}}$=(-1,-2,0),
设平面A1DC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=-2x-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}C}=-x-2y-\sqrt{3}z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,$\frac{\sqrt{3}}{2}$,-2),
设平面A1DC1的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}D}=-2a-\sqrt{3}c=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}{C}_{1}}=-a-2b=0}\end{array}\right.$,取a=2$\sqrt{3}$,得$\overrightarrow{m}$=(2$\sqrt{3}$,-$\sqrt{3}$,-4),
设二面角C-A1D-C1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\frac{25}{2}}{\frac{31}{2}}$=$\frac{25}{31}$.
∴二面角C-A1D-C1的余弦值为$\frac{25}{31}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,考查推理论证能力、空间思维能力、运算求解能力,考查转化化归思想、数形结合思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网