题目内容
19.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4)(x5,y5).根据收集到的数据可知$\overrightarrow{x}$=20,由最小二乘法求得回归直线方程为$\stackrel{∧}{y}$=0.6x+48,则$\sum_{i=1}^5{y_i}$=( )| A. | 60 | B. | 120 | C. | 150 | D. | 300 |
分析 根据数据可知$\overrightarrow{x}$=20,回归直线方程为$\stackrel{∧}{y}$=0.6x+48,带入可得$\stackrel{∧}{y}$,即可求$\sum_{i=1}^5{y_i}$.
解答 解:由题意,$\overrightarrow{x}$=20,回归直线方程为$\stackrel{∧}{y}$=0.6x+48,
∴$\stackrel{∧}{y}$=0.6×20+48=60.
则$\sum_{i=1}^5{y_i}$=60×5=300.
故选:D.
点评 本题考查了线性回归方程的求法及应用,属于基础题.
练习册系列答案
相关题目
7.若f'(x)=3,则$\underset{lim}{m→0}$$\frac{f({x}_{0}-m)-f({x}_{0})}{3m}$等于( )
| A. | 3 | B. | $\frac{1}{3}$ | C. | -1 | D. | 1 |
14.计算定积分${∫}_{1}^{3}$(2x-$\frac{1}{x^2}$)dx的值是( )
| A. | 0 | B. | $\frac{22}{3}$ | C. | $\frac{11}{3}$ | D. | $\frac{3}{11}$ |
8.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程为( )
| A. | (x-1)2+(y-1)2=1 | B. | (x-$\frac{3}{5}$)2+(y-$\frac{3}{5}$)2=2 | C. | (x+1)2+(y+1)2=1 | D. | (x+$\frac{3}{5}$)2+(y+$\frac{3}{5}$)2=2 |