题目内容

6.已知AB、DE为圆O的直径,CD⊥AB于N,N为OB的中点,EB与CD相交于点M,切线EF与DC的延长线交于点F.
(1)求证:EF=FM;
(2)若圆O的半径为1,求EF的长.

分析 (1)连接AE,证明A,E,M,N四点共圆,可得∠FME=∠EAB,EF是圆O的切线,可得∠FEB=∠EAB,∠EMF=∠FEB,即可证明EF=FM;
(2)若圆O的半径为1,利用射影定理求EF的长.

解答 (1)证明:连接AE,
∵AB为圆O的直径,
∴∠AEB=90°,
∵CD⊥AB,
∴A,E,M,N四点共圆,
∴∠FME=∠EAB,
∵EF是圆O的切线,
∴∠FEB=∠EAB,
∴∠EMF=∠FEB,
∴EF=FM;
(2)解:连接EC,
∵DE为圆O的直径,
∴EC⊥CD,ON∥EC,ON=$\frac{1}{2}$EC,
∵圆O的半径为1,N为OB的中点,
∴EC=1,CD=$\sqrt{3}$,
Rt△DEF中,EC2=FC•CD,∴FC=$\frac{\sqrt{3}}{3}$
∴EF2=FC•FD=$\frac{4}{3}$,∴EF=$\frac{2\sqrt{3}}{3}$.

点评 本题考查圆的切线的性质,射影定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网