题目内容

若数列{an}满足:a1=
2
3
,a2=2,3(an+1-2an+an-1)=2,
(1)证明:数列{an+1-an}是等差数列;
(2)求使
1
a1
+
1
a2
+
1
a3
+…+
1
an
5
2
成立的最小正整数n.
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)令bn=an+1-an,则bn-1=an-an-1,由已知得(an+1-an)-(an-an-1)=
2
3
,由此能证明数列{an+1-an}是首项为
4
3
,公差为
2
3
的等差数列.
(2)由an+1-an=
4
3
+(n-1)•
2
3
=
2
3
(n+1)
,利用累加法得an=
2
3
+
2
3
(2+3+4+…+n)=
n2+n
3
,从而
1
an
=
3
n(n+1)
=3(
1
n
-
1
n+1
),由此利用裂项法能求出使
1
a1
+
1
a2
+
1
a3
+…+
1
an
5
2
成立的最小正整数n.
解答: (1)证明:令bn=an+1-an
则bn-1=an-an-1
∵3(an+1-2an+an-1)=2,
∴an+1-2an+an-1=
2
3

∴an+1-an-an+an-1=
2
3

(an+1-an)-(an-an-1)=
2
3

∴bn-bn-1=
2
3

又a2-a1=2-
2
3
=
4
3

∴数列{an+1-an}是首项为
4
3
,公差为
2
3
的等差数列.
(2)解:由(1)得an+1-an=
4
3
+(n-1)•
2
3
=
2
3
(n+1)

∴an=a1+a2-a1+a3-a2+…+an-an-1
=
2
3
+
2
3
(2+3+4+…+n)
=
n2+n
3

1
an
=
3
n(n+1)
=3(
1
n
-
1
n+1
),
1
a1
+
1
a2
+
1
a3
+…+
1
an

=3(1-
1
2
+
1
2
-
1
3
+
…+
1
n
-
1
n+1

=3(1-
1
n+1

=
3n
n+1

1
a1
+
1
a2
+
1
a3
+…+
1
an
5
2

3n
n+1
5
2

解得n>5,
又n为正整数,∴n最小为6.
点评:本题考查等差数列的证明,考查满足条件的最上正整数n的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网