题目内容
5.若圆(x-1)2+(y+1)2=r2上有且只有两个点到直线x-y+1=0的距离等于$\frac{{\sqrt{2}}}{2}$,则半径r的取值范围是( )| A. | $(\sqrt{2},2\sqrt{2}]$ | B. | $(\sqrt{2},2\sqrt{2})$ | C. | $[\sqrt{2},2\sqrt{2})$ | D. | $[\sqrt{2},2\sqrt{2}]$ |
分析 圆心(1,1)到直线x-y+1=0的距离d=$\frac{\sqrt{2}}{2}$,由此根据圆上有且只有两个点到直线x-y+1=0的距离等于$\frac{{\sqrt{2}}}{2}$,能求出半径r的取值范围.
解答 解:圆(x-1)2+(y+1)2=r2的圆心(1,1),半径为r,
圆心(1,1)到直线x-y+1=0的距离d=$\frac{|1-1+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$
∵圆上有且只有两个点到直线x-y+1=0的距离等于$\frac{{\sqrt{2}}}{2}$,
∴$\sqrt{2}<r<2\sqrt{2}$.即半径r的取值范围是($\sqrt{2},2\sqrt{2}$).
故选:B.
点评 本题考查圆半径的取值范围的求法,考查圆、直线方程、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目
8.设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是( )
| A. | 0.2 | B. | 0.8 | C. | 0.2或0.8 | D. | 0.16 |
9.设a=log${\;}_{\frac{1}{2}}$5,b=($\frac{1}{3}$)0.2,c=2${\;}^{\frac{1}{3}}$,则( )
| A. | a<b<c | B. | c<a<b | C. | c<b<a | D. | b<a<c |
13.过点A(3,-1)的直线被圆C:x2+y2-4x+6y+4=0所截得的弦中,最短弦所在的直线的方程是( )
| A. | x+2y-1=0 | B. | 2x+y-5=0 | C. | 2x-y-7=0 | D. | x-2y-5=0 |
20.
水平放置的△ABC,用斜二测画法作出的直观图是如图所示的△A'B'C',其中O'A'=O'B'=2,$O'C'=\sqrt{3}$,则△ABC绕AB所在直线旋转一周后形成的几何体的表面积为( )
| A. | $8\sqrt{3}π$ | B. | $16\sqrt{3}π$ | C. | $({8\sqrt{3}+3})π$ | D. | $({16\sqrt{3}+12})π$ |
10.设函数f(x)=|x-3|-|x+1|,则关于f(x)的描述正确的是( )
| A. | 函数f(x)的图象关于直线x=1对称 | B. | 函数f(x)的图象关于点(1,0)对称 | ||
| C. | 函数f(x)有最小值,无最大值 | D. | 函数f(x)在(-∞,-1]上单调递减 |