题目内容
已知集合{1,2,3,4,…,n}(n≥3),若该集合具有下列性质的子集:每个子集至少含有2个元素,且每个子集中任意两个元素之差的绝对值大于1,则称这些子集为T子集,记T子集的个数为an.
(1)当n=5时,写出所有T子集;
(2)求a10;
(3)记Sn=
+
+
+…+
,求证:Sn<2.
(1)当n=5时,写出所有T子集;
(2)求a10;
(3)记Sn=
| a3 |
| 23 |
| a4 |
| 24 |
| a5 |
| 25 |
| an |
| 2n |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)当n=5时,利用列举法能求出所有T子集.
(Ⅱ){1,2,3,4,…,k,k+1,k+2}的T子集可分为两类:第一类子集中不含有k+2,这类子集有ak+1个;第二类子集中含有k+2,这类子集成为{1,2,3,4,…,k}的T子集与{k+2}的并,或为{1,2,3,4,…,k}的单元素子集与{k+2}的并,共有ak+k个,由此能求出a10.
(Ⅲ)由Sn=
+
+
+…+
,得
Sn=
+
+
+…+
,由此利用错位相减法能证明Sn<2
(Ⅱ){1,2,3,4,…,k,k+1,k+2}的T子集可分为两类:第一类子集中不含有k+2,这类子集有ak+1个;第二类子集中含有k+2,这类子集成为{1,2,3,4,…,k}的T子集与{k+2}的并,或为{1,2,3,4,…,k}的单元素子集与{k+2}的并,共有ak+k个,由此能求出a10.
(Ⅲ)由Sn=
| 1 |
| 23 |
| 3 |
| 24 |
| 7 |
| 25 |
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 24 |
| 3 |
| 25 |
| 4 |
| 26 |
| an |
| 2n+1 |
解答:
解:(Ⅰ)当n=5时,所有T子集:
{1,3},{1,4},{1,5},{2,4},{2,5},{3,5},{1,3,5}.
(Ⅱ){1,2,3,4,…,k,k+1,k+2}的T子集可分为两类:
第一类子集中不含有k+2,这类子集有ak+1个;
第二类子集中含有k+2,这类子集成为{1,2,3,4,…,k}的T子集与{k+2}的并,
或为{1,2,3,4,…,k}的单元素子集与{k+2}的并,共有ak+k个.
所以ak+2=ak+1+ak+k.
因为a3=1,a4=3,
所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.
(Ⅲ)∵Sn=
+
+
+…+
,①
Sn=
+
+
+…+
,②
①-②,得:
Sn=
+(
+
+
+…+
)-
=
+
+
(
+…+
)-
=
+
+
(
+
+…+
)-
=
+
+
Sn-1-(
+
+…+
)-
=
+
Sn-2+
-(
)n-1-
-
<
+
Sn-2+
<
+
Sn,
∴Sn<2.
{1,3},{1,4},{1,5},{2,4},{2,5},{3,5},{1,3,5}.
(Ⅱ){1,2,3,4,…,k,k+1,k+2}的T子集可分为两类:
第一类子集中不含有k+2,这类子集有ak+1个;
第二类子集中含有k+2,这类子集成为{1,2,3,4,…,k}的T子集与{k+2}的并,
或为{1,2,3,4,…,k}的单元素子集与{k+2}的并,共有ak+k个.
所以ak+2=ak+1+ak+k.
因为a3=1,a4=3,
所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.
(Ⅲ)∵Sn=
| 1 |
| 23 |
| 3 |
| 24 |
| 7 |
| 25 |
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 24 |
| 3 |
| 25 |
| 4 |
| 26 |
| an |
| 2n+1 |
①-②,得:
| 1 |
| 2 |
| 1 |
| 23 |
| 2 |
| 24 |
| 4 |
| 23 |
| 7 |
| 26 |
| an-2+n-2 |
| 2n |
| an |
| 2n+1 |
=
| 1 |
| 23 |
| 2 |
| 24 |
| 1 |
| 22 |
| a2+4 |
| 24 |
| an-2+n-2 |
| 2n |
| an |
| 2n-1 |
=
| 1 |
| 23 |
| 2 |
| 24 |
| 1 |
| 22 |
| a2+3 |
| 23 |
| a4+4 |
| 24 |
| an-2+n-2 |
| 2n-1 |
| an |
| 2n+1 |
=
| 1 |
| 2n |
| 2 |
| 2n |
| 1 |
| 22 |
| 3 |
| 23 |
| 4 |
| 24 |
| n-2 |
| 2n |
| an |
| 2n+1 |
=
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| n-2 |
| 2n |
| an |
| 2n+1 |
<
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
<
| 1 |
| 2 |
| 1 |
| 4 |
∴Sn<2.
点评:本题考查所有T子集的求法,考查数列的第10项的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
椭圆
+
=1内一点P(3,2),过点P的弦AB恰好被点P平分,则直线AB的方程为( )
| x2 |
| 36 |
| y2 |
| 16 |
| A、2x-3y=0 |
| B、x+y-5=0 |
| C、2x+3y-12=0 |
| D、3x-2y-5=0 |
函数y=3
+4
的最大值为( )
| x-5 |
| 6-x |
| A、25 | B、3 | C、4 | D、5 |