题目内容

已知A(x1,y1),B(x2,y2)是f(x)=
1
2
+log2
x
1-x
图象上任意两点,设点M(
1
2
,b)为AB的中点,若Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
),其中n∈N+,则n≥2,求Sn
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:由已知得到AB的中点M的横坐标为定值1,进一步得到f(x1)+f(x2)=1,然后采用倒序相加法求Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
)的值.
解答: 解:∵M(
1
2
,b)为AB的中点,∴
x1+x2
2
=
1
2
,即x1+x1=1,
∴x1=1-x2或x2=1-x1
∴b=
1
2
(y1+y2)
=
1
2
[f(x1)+f(x2)]=
1
2
(
1
2
+log2
x1
1-x1
+
1
2
+log2
x2
1-x2
)

=
1
2
(1+log2
x1
1-x1
+log2
x2
1-x2
)
=
1
2
(1+log2
x1
1-x1
x2
1-x2
)=
1
2
(1+log2
x1x2
x2x1
)
=
1
2

∴M点的纵坐标为定值
1
2
,则f(x1)+f(x2)=y1+y2=1,
Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
),
Sn=f(
n-1
n
)+f(
n-2
n
)+…+f(
1
n
)

两式相加得:2Sn=[f(
1
n
)+f(
n-1
n
)]+[f(
2
n
)+f(
n-2
n
)]+…+
[f(
n-1
n
)+f(
1
n
)]
=1+1+…+1=n-1.
Sn=
n-1
2
,n∈N+,则n≥2.
点评:本题考查了数列的函数特性,考查了倒序相加法求数列的和,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网