ÌâÄ¿ÄÚÈÝ

17£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3cos¦È}\\{y=2sin¦È}\end{array}$£¨¦ÈΪ²ÎÊý£©£¬ÔÚÍ¬Ò»Æ½ÃæÖ±½Ç×ø±êϵÖУ¬½«ÇúÏßCÉÏµÄµã°´×ø±ê±ä»»$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$µÃµ½ÇúÏßC'£¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£®
£¨1£©Ð´³öÇúÏßCÓëÇúÏßC'µÄ¼«×ø±êµÄ·½³Ì£» 
£¨2£©Èô¹ýµã$A£¨{2\sqrt{2}£¬\frac{¦Ð}{4}}£©$£¨¼«×ø±ê£©ÇÒÇãб½ÇΪ$\frac{¦Ð}{3}$µÄÖ±ÏßlÓëÇúÏßC½»ÓÚM£¬NÁ½µã£¬ÏÒMNµÄÖеãΪP£¬Çó$\frac{|AP|}{|AM|•|AN|}$µÄÖµ£®

·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬Ð´³öÇúÏßCÓëÇúÏßC'µÄ¼«×ø±êµÄ·½³Ì£» 
£¨2£©ÀûÓòÎÊý·½³Ì£¬¼°²ÎÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉÇó$\frac{|AP|}{|AM|•|AN|}$µÄÖµ£®

½â´ð ½â£º£¨1£©$C£º\left\{{\begin{array}{l}{x=3cos¦È}\\{y=2sin¦È}\end{array}}\right.⇒C£º\frac{x^2}{9}+\frac{y^2}{4}=1$£¬
½«$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}\right.⇒\left\{{\begin{array}{l}{x=3x'}\\{y=2y'}\end{array}}\right.$£¬´úÈëCµÄÆÕͨ·½³Ì¿ÉµÃx'2+y'2=1£¬¼´C'£ºx2+y2=1¡­£¨2·Ö£©
½«$\left\{{\begin{array}{l}{x=¦Ñcos¦Á}\\{y=¦Ñsin¦Á}\end{array}}\right.$´úÈëÇúÏß·½³Ì¿ÉµÃ$C£º\frac{{{¦Ñ^2}{{cos}^2}¦Á}}{9}+\frac{{{¦Ñ^2}{{sin}^2}¦Á}}{4}=1$£¬C'£º¦Ñ=1£®¡­£¨5·Ö£©
£¨2£©µã$A£¨{2\sqrt{2}£¬\frac{¦Ð}{4}}£©$Ö±½Ç×ø±êÊÇA£¨2£¬2£©£¬½«lµÄ²ÎÊý·½³Ì$\left\{{\begin{array}{l}{x=2+tcos\frac{¦Ð}{3}}\\{y=3+tsin\frac{¦Ð}{3}}\end{array}}\right.$
´úÈë$\frac{x^2}{9}+\frac{y^2}{4}=1$£¬
¿ÉµÃ$\frac{31}{4}{t^2}+£¨8+18\sqrt{3}£©t+16=0$£¬¡­£¨7·Ö£©
ËùÒÔ$\frac{|AP|}{|AM|•|AN|}=\frac{{|{\frac{{{t_1}+{t_2}}}{2}}|}}{{|{{t_1}{t_2}}|}}=\frac{{4+9\sqrt{3}}}{16}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø