题目内容
直线m,n均不在平面α,β内,给出下列命题:其中有中正确命题的个数是( )
①若m∥n,n∥α,则m∥α;
②若m∥β,α∥β,则m∥α;
③若m⊥n,n⊥α,则m∥α;
④若m⊥β,α⊥β,则m∥α.
①若m∥n,n∥α,则m∥α;
②若m∥β,α∥β,则m∥α;
③若m⊥n,n⊥α,则m∥α;
④若m⊥β,α⊥β,则m∥α.
| A、1 | B、2 | C、3 | D、4 |
考点:命题的真假判断与应用
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系的定义,判定,性质和几何特征,逐一分析四个结论的真假,可得答案.
解答:
解:注意前提条件直线m,n均不在平面α,β内.
对于①,根据线面平行的判定定理知,m∥α,故①正确;
对于②,如果直线m与平面α相交,则必与β相交,而这与α∥β矛盾,故m∥α,故②正确;
对于③,在平面α内任取一点A,设过A,m的平面γ与平面α相交于直线b,
∵n⊥α,∴n⊥b,又m⊥n,∴m⊥b,∴m∥α,故③正确;
对于④,设α∩β=l,在α内作m′⊥β,
∵m⊥β,∴m∥m′,∴m∥α,故④正确.
故选:D.
对于①,根据线面平行的判定定理知,m∥α,故①正确;
对于②,如果直线m与平面α相交,则必与β相交,而这与α∥β矛盾,故m∥α,故②正确;
对于③,在平面α内任取一点A,设过A,m的平面γ与平面α相交于直线b,
∵n⊥α,∴n⊥b,又m⊥n,∴m⊥b,∴m∥α,故③正确;
对于④,设α∩β=l,在α内作m′⊥β,
∵m⊥β,∴m∥m′,∴m∥α,故④正确.
故选:D.
点评:本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( )
| A、4 | B、2 | C、8 | D、1 |