题目内容
用如下方法从2009名工人中选取100名代表:先用简单随机抽样从2009人中剔除9人,剩下的2000人再按系统抽样的方法选取l00人.则工人甲被抽到的概率为 .
考点:系统抽样方法
专题:计算题,推理和证明
分析:在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,每个个体被抽到包括两个过程,这两个过程是相互独立的.
解答:
解:∵在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,然后再分组,
在剔除过程中,每个个体被剔除的概率相等,
∴每个个体被抽到包括两个过程,一是不被剔除,二是选中,这两个过程是相互独立的,
∴每人入选的概率P=
×
=
.
故答案为:
.
在剔除过程中,每个个体被剔除的概率相等,
∴每个个体被抽到包括两个过程,一是不被剔除,二是选中,这两个过程是相互独立的,
∴每人入选的概率P=
| 2000 |
| 2009 |
| 100 |
| 2000 |
| 100 |
| 2009 |
故答案为:
| 100 |
| 2009 |
点评:在系统抽样过程中,为将整个的编号分段(即分成几个部分),要确定分段的间隔,当在系统抽样过程中比值不是整数时,通过从总体中删除一些个体(用简单随机抽样的方法).
练习册系列答案
相关题目
若函数f(x)=loga(x2+
x),(a>0,a≠1)在区间(
,+∞)内恒有f(x)<0,则f(x)的单调递减区间是( )
| 3 |
| 2 |
| 1 |
| 2 |
A、(-∞,-
| ||
B、(-∞,-
| ||
C、(-
| ||
| D、(0,+∞) |
函数y=
+
是( )
| x-1 |
| 1-x |
| A、.偶函数 | B、奇函数 |
| C、即奇又偶函数 | D、非奇非偶函数 |