题目内容

9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为$\frac{a^2}{3sinA}$.
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.

分析 (1)根据三角形面积公式和正弦定理可得答案,
(2)根据两角余弦公式可得cosA=$\frac{1}{2}$,即可求出A=$\frac{π}{3}$,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.

解答 解:(1)由三角形的面积公式可得S△ABC=$\frac{1}{2}$acsinB=$\frac{a^2}{3sinA}$,
∴3csinBsinA=2a,
由正弦定理可得3sinCsinBsinA=2sinA,
∵sinA≠0,
∴sinBsinC=$\frac{2}{3}$;
(2)∵6cosBcosC=1,
∴cosBcosC=$\frac{1}{6}$,
∴cosBcosC-sinBsinC=$\frac{1}{6}$-$\frac{2}{3}$=-$\frac{1}{2}$,
∴cos(B+C)=-$\frac{1}{2}$,
∴cosA=$\frac{1}{2}$,
∵0<A<π,
∴A=$\frac{π}{3}$,
∵$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R=$\frac{3}{\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$,
∴sinBsinC=$\frac{b}{2R}$•$\frac{c}{2R}$=$\frac{bc}{(2\sqrt{3})^{2}}$=$\frac{bc}{12}$=$\frac{2}{3}$,
∴bc=8,
∵a2=b2+c2-2bccosA,
∴b2+c2-bc=9,
∴(b+c)2=9+3cb=9+24=33,
∴b+c=$\sqrt{33}$
∴周长a+b+c=3+$\sqrt{33}$.

点评 本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网