题目内容

19.已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3
(1)求数列{an}通项公式;
(2){bn} 为各项非零的等差数列,其前n项和为Sn,已知S2n+1=bnbn+1,求数列$\left\{\frac{{b}_{n}}{{a}_{n}}\right\}$的前n项和Tn

分析 (1)通过首项和公比,联立a1+a2=6、a1a2=a3,可求出a1=q=2,进而利用等比数列的通项公式可得结论;
(2)利用等差数列的性质可知S2n+1=(2n+1)bn+1,结合S2n+1=bnbn+1可知bn=2n+1,进而可知$\frac{{b}_{n}}{{a}_{n}}$=$\frac{2n+1}{{2}^{n}}$,利用错位相减法计算即得结论.

解答 解:(1)记正项等比数列{an}的公比为q,
因为a1+a2=6,a1a2=a3
所以(1+q)a1=6,q${{a}_{1}}^{2}$=q2a1
解得:a1=q=2,
所以an=2n
(2)因为{bn} 为各项非零的等差数列,
所以S2n+1=(2n+1)bn+1
又因为S2n+1=bnbn+1
所以bn=2n+1,$\frac{{b}_{n}}{{a}_{n}}$=$\frac{2n+1}{{2}^{n}}$,
所以Tn=3•$\frac{1}{2}$+5•$\frac{1}{{2}^{2}}$+…+(2n+1)•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Tn=3•$\frac{1}{{2}^{2}}$+5•$\frac{1}{{2}^{3}}$+…+(2n-1)•$\frac{1}{{2}^{n}}$+(2n+1)•$\frac{1}{{2}^{n+1}}$,
两式相减得:$\frac{1}{2}$Tn=3•$\frac{1}{2}$+2($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)-(2n+1)•$\frac{1}{{2}^{n+1}}$,
即$\frac{1}{2}$Tn=3•$\frac{1}{2}$+($\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$)-(2n+1)•$\frac{1}{{2}^{n+1}}$,
即Tn=3+1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-2}}$)-(2n+1)•$\frac{1}{{2}^{n}}$=3+$\frac{1-\frac{1}{{2}^{n-1}}}{1-\frac{1}{2}}$-(2n+1)•$\frac{1}{{2}^{n}}$
=5-$\frac{2n+5}{{2}^{n}}$.

点评 本题考查数列的通项及前n项和,考查等差数列的性质,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网