题目内容

用数学归纳法证明1×4+2×7+3×10+…+n(3n+1)=n(n+1)2
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:利用数学归纳法来证明,当n=1时,命题成立,再假设当n=k时,1×4+2×7+3×10+…+k(3k+1)=k(k+1)2成立,证明当n=k+1时,命题也成立.
解答: 证明:①当n=1时,3n+1=4,而等式左边起始为1×4的连续的正整数积的和,
故n=1时,等式左端=1×4=4,右端=4,成立;
②设当n=k时,1×4+2×7+3×10+…+k(3k+1)=k(k+1)2成立,
则当n=k+1时,1×4+2×7+3×10+…+k(3k+1)+(k+1)(3k+4)=k(k+1)2+(k+1)(3k+4)=(k+1)(k2+k+3k+4)=(k+1)(k+1+1)2,即n=k+1,成立
综上所述,1×4+2×7+3×10+…+n(3n+1)=n(n+1)2
点评:本题考查数学归纳法的运用,解题的关键正确运用数学归纳法的证题步骤,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网