题目内容

10.已知数列{an}满足:a1=1,an+1=$\frac{a_n}{{{a_n}+2}}$(n∈N*)若${b_{n+1}}=(n-2λ)•(\frac{1}{a_n}+1)$(n∈N*),b1=-$\frac{3}{2}$λ,且数列{bn}是单调递增数列,则实数λ的取值范围是(  )
A.$λ<\frac{4}{5}$B.λ<1C.$λ<\frac{3}{2}$D.$λ<\frac{2}{3}$

分析 根据数列的递推公式可得数列{$\frac{1}{{a}_{n}}$+1}是等比数列,首项为$\frac{1}{{a}_{1}}$+1=2,公比为2,再代值得到bn+1=(n-2λ)•2n,根据数列的单调性即可求出λ的范围.

解答 解:∵数列{an}满足:a1=1,an+1=$\frac{a_n}{{{a_n}+2}}$(n∈N*),
∴$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$+1,化为$\frac{1}{{a}_{n+1}}$+1=$\frac{2}{{a}_{n}}$+2
∴数列{$\frac{1}{{a}_{n}}$+1}是等比数列,首项为$\frac{1}{{a}_{1}}$+1=2,公比为2,
∴$\frac{1}{{a}_{n}}$+1=2n
∴bn+1=(n-2λ)($\frac{1}{{a}_{n}}$+1)=(n-2λ)•2n
∵数列{bn}是单调递增数列,
∴bn+1>bn
∴(n-2λ)•2n>(n-1-2λ)•2n-1
解得λ<1,
但是当n=1时,
b2>b1,∵b1=-$\frac{3}{2}$λ,
∴(1-2λ)•2>-$\frac{3}{2}$λ,
解得λ<$\frac{4}{5}$,
故选:A.

点评 本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网