题目内容
4.定义在R上的偶函数f(x),满足f(x+1)=-f(x),且f(x)在[-1,0]上是增函数,①f(x)为周期函数;
②f(x)的图象关于x=1对称;
③f(x)在[0,1]上为增函数;
④f(x)在[1,2]上为减函数;
⑤f(2)=f(0).
则上述说法正确的有①②⑤.
分析 由f(x)定义在R上的偶函数,则必有f(x)=f(-x),又有关系式f(x+1)=-f(x),两个式子综合起来就可以求得周期了.再根据周期函数的性质,且在[-1,0]上是增函数,推出单调区间即可.
解答 解:∵定义在R上的偶函数f(x)满足f(x+1)=-f(x),
∴f(x)=-f(x+1)=-[-f(x+1+1)]=f(x+2),
∴f(x)是周期为2的函数,则①正确.
又∵f(x+2)=f(x)=f(-x),
∴y=f(x)的图象关于x=1对称,②正确,
又∵f(x)为偶函数且在[-1,0]上是增函数,
∴f(x)在[0,1]上是减函数,
又∵对称轴为x=1.
∴f(x)在[1,2]上为增函数,f(2)=f(0),
故③④错误,⑤正确.
故答案应为①②⑤.
点评 本题考查了偶函数及周期函数的性质问题,其中涉及到函数单调性问题.对于偶函数和周期函数是非常重要的考点,需要理解记忆,属于中档题.
练习册系列答案
相关题目
9.已知tanα=3,则$\frac{sin2α-1}{{{{cos}^2}α+2{{sin}^2}α}}$=( )
| A. | $-\frac{2}{17}$ | B. | $\frac{2}{17}$ | C. | $\frac{4}{19}$ | D. | $-\frac{4}{19}$ |
9.在等腰梯形ABCD中,AB=2CD=2,∠DAB=60°,E是AB的中点,将△ADE与△BEC分别沿ED,EC向上折起,使A,B重合于点P,若三棱锥P-CDE的各个顶点在同一球面上,则该球的表面积为( )
| A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{\sqrt{6}π}{2}$ | C. | $\frac{\sqrt{6}π}{8}$ | D. | $\frac{3π}{2}$ |
16.不等式组$\left\{\begin{array}{l}x>m\\ x<4\end{array}\right.$的整数解有4个,则m的取值范围是( )
| A. | -1≤m<0 | B. | -1<m≤0 | C. | -1≤m≤0 | D. | -1<m<0 |