题目内容
3.某单位为了了解用电量y度与气温x℃之间的关系,统计了某4天的用电量与当天气温,数据如表| 气温(℃) | 18 | 13 | 10 | -1 |
| 用电量(度) | 24 | 34 | 38 | 64 |
分析 根据所给的表格求出本组数据的样本中心点,结合样本中心点在线性回归直线上求得a值,从而得出回归直线方程,根据所给x的值,代入线性回归方程,即可得到结论.
解答 解:由题意,$\overline{x}$=$\frac{1}{4}$×(18+13+10-1)=10,$\overline{y}$=$\frac{1}{4}$(24+34+38+64)=40;
将(10,40)代入线性回归方程$\hat y=bx+a$中,且b=-2,
∴40=10×(-2)+a,
解得a=60,
∴$\stackrel{∧}{y}$=-2x+60;
∴当x=5时,$\stackrel{∧}{y}$=-2×5+60=50.
故答案为:50.
点评 本题考查了回归直线方程与回归分析的初步应用问题,解题的关键是根据样本中心点确定回归的直线方程.
练习册系列答案
相关题目
14.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:
则可以说其亲属的饮食习惯与年龄有关的把握为( )
附:参考公式和临界值表${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
| 偏爱蔬菜 | 偏爱肉类 | 合计 | |
| 50岁以下 | 4 | 8 | 12 |
| 50岁以上 | 16 | 2 | 18 |
| 合计 | 20 | 10 | 30 |
附:参考公式和临界值表${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
| k | 2.706 | 3.841 | 6.636 | 10.828 |
| P(K2>k) | 0.10 | 0.05 | 0.010 | 0.001 |
| A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |
11.已知集合M={x|x2<3x},N={x|lnx<0},则集合M∩N=( )
| A. | (-2,0] | B. | (0,1) | C. | (2,3] | D. | (-2,3) |
18.直线x-$\sqrt{3}$y-$\sqrt{3}$=0的倾斜角是( )
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
8.下列命题中是假命题的是( )
| A. | 存在α,β∈R,使tan(α+β)=tan α+tan β | |
| B. | 对任意x>0,有lg2x+lg x+1>0 | |
| C. | △ABC中,A>B的充要条件是sin A>sin B | |
| D. | 对任意φ∈R,函数y=sin(2x+φ)都不是偶函数 |
12.
“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(I)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并从这6名选手中抽取2名幸运选手,求2名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$.其中n=a+b+c+d)
(I)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
| P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$.其中n=a+b+c+d)